

WEATHER BUREAU Western Region Salt Lake City, Utah

December 1969

Statistical Analysis As a Flood Routing Tool

Robert J. C. Burnash

WESTERN REGION TECHNICAL MEMORANDA

The Technical Memorandum series provide an informal medium for the documentation and quick dissemination of results not appropriate, or not yet ready, for formal publication in the standard journals. The series are used to report on work in progress, to describe technical procedures and practices, or to report to a limited audience. These Technical Memoranda will report on investigations devoted primarily to Regional and local problems of interest mainly to Western Region personnel, and hence will not be widely distributed.

These Memoranda are available from the Western Region Headquarters at the following address: Weather Bureau Western Region Headquarters, Attention SSD, P. O. Box 11188, Federal Building, Salt Lake City, Utah 84111.

The Western Region subseries of ESSA Technical Memoranda, beginning with No. 24, are available also from the Clearinghouse for Federal Scientific and Technical Information, U. S. Department of Commerce, Sills Building, Port Royal Road, Springfield, Virginia 22151. Price \$3.00.

Western Region Technical Memoranda:

- Some Notes on Probability Forecasting. Edward D. Diemer. September 1965. No. 1* No. 2 Climatological Precipitation Probabilities. Compiled by Lucianne Miller. December 1965.
- No. 3 Western Region Pre- and Post-FP-3 Program. Edward D. Diemer. March 1966. Use of Meteorological Satellite Data. March 1966. No. 4
- No. 5** Station Descriptions of Local Effects on Synoptic Weather Patterns. Philip Williams. April 1966.
- No. 6
- Improvement of Forecast Wording and Format. C. L. Glenn. May 1966. Final Report on Precipitation Probability Test Programs. Edward D. Diemer. No. 7 May 1966.
- No. 8 Interpreting the RAREP. Herbert P. Benner. May 1966. (Revised Jan. 1967.) No. 9 A Collection of Papers Related to the 1966 NMC Primitive-Equation Model. June 1966.
- No. 10* Sonic Boom. Loren Crow (6th Weather Wing, USAF, Pamphlet). June 1966.
- No. 11 Some Electrical Processes in the Atmosphere. J. Latham. June 1966.
- No. 12* A Comparison of Fog Incidence at Missoula, Montana, with Surrounding Locations. Richard A. Dightman. August 1966.
- A Collection of Technical Attachments on the 1966 NMC Primitive-Equation Model. No. 13 Leonard W. Snellman. August 1966.
- No. 14 Applications of Net Radiometer Measurements to Short-Range Fog and Stratus Forecasting at Los Angeles. Frederick Thomas. September 1966. The Use of the Mean as an Estimate of "Normal" Precipitation in an Arid Region.
- No. 15 Paul C. Kangieser. November 1966.
- No. 16 Some Notes on Acclimatization in Man. Edited by Leonard W. Snellman. Nov. 1966. No. 17 A Digitalized Summary of Radar Echoes Within 100 Miles of Sacramento, California. J. A. Youngberg and L. B. Overaas. December 1966.
- Limitations of Selected Meteorological Data. December 1966. No. 18
- No. 19 A Grid Method for Estimating Precipitation Amounts by Using the WSR-57 Radar.
- R. Granger, December 1966. Transmitting Radar Echo Locations to Local Fire Control Agencies for Lightning No. 20
- Fire Detection. Robert R. Peterson. March 1967.
- No. 21 An Objective Aid for Forecasting the End of East Winds in the Columbia Gorge. D. John Coparanis. April 1967.
- Derivation of Radar Horizons in Mountainous Terrain. Roger G. Pappas. April 1967. No. 22 No. 23 "K" Chart Application to Thunderstorm Forecasts Over the Western United States. Richard E. Hambidge. May 1967.

*Out of Print **Revised

A western Indian symbol for rain. It also symbolizes man's dependence on weather and environment in the West.

U. S. DEPARTMENT OF COMMERCE ENVIRONMENTAL SCIENCE SERVICES ADMINISTRATION WEATHER BUREAU

Weather Bureau Technical Memorandum WR-47

STATISTICAL ANALYSIS AS A FLOOD ROUTING TOOL

Robert J. C. Burnash Principal Assistant RFC, Sacramento, California

WESTERN REGION TECHNICAL MEMORANDUM NO. 47

SALT LAKE CITY, UTAH DECEMBER 1969

TABLE OF CONTENTS

	Page
Statistical Analysis as a Flood Routing Tool	I - 7
Figure I. Hypothetical Case, with Tributaries Gaged at A and B; Combined Flow Gaged at C	l
Figure 2. Andalusia-Brooklyn Reach on Conecuh River.	2
Table 1. Example of Routing for Andalusia- Brooklyn Reach, Conecuh River	3
Table 2. Coefficients and Individual Sums from Statistical Analysis	4
Table 3. Error Analysis	5
References	7

STATISTICAL ANALYSIS AS A FLOOD ROUTING TOOL

The use of statistics as an aid to flood routing analysis is referred to by Linsley, Kohler and Paulus [1]. It is pointed out that coefficients of the Muskingum flood routing technique can be derived statistically. Requirements of their equation (10-24d) on page 229 do, however, specify that the coefficients derived sum to unity in order that a rational solution can be achieved. This requirement precludes use of any parameters which are not linear (i.e., polynomial arguments), for such parameters cannot maintain volumetric continuity except at a single level of discharge.

Can a statistical analysis provide a rational solution of a linear analysis with dependability? A hypothetical case of statistical analysis of the flow from two tributaries to a downstream point indicates some of the problems which statistics may encounter. Consider a 100-square mile basin with two major gaged tributaries (Figure 1).

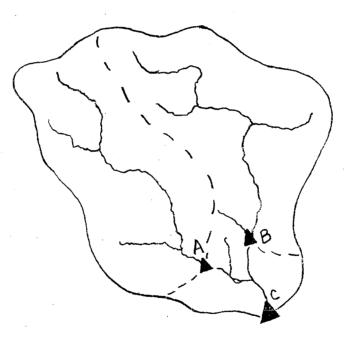
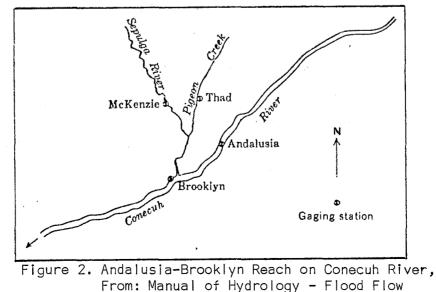


Figure 1. Hypothetical case, with tributaries gaged at A and B; combined flow gaged at C.

The tributaries are gaged at A and B. The combined flow plus five additional miles of local inflow is gaged at C. The flow at all gaging points is listed for successive time intervals as:

<u>A</u>	B	<u>C</u>
2.0	1.8	4.0
4.2	3.9	8.5
8.5	8.5	17.5
7.3	6.9	14.9
4.2	3.9	8.5
3.0	2.7	6.0


Correlating A and B against C with standard correlation techniques yields a more perfect prediction of C than can be obtained from any routing. The correlation coefficient R square is .999 and the prediction equation is:

C = 2,76147A - .77314B - .09684.

However, the coefficients for A and B do not stand the scrutiny of component analysis. For example if a reservoir were built above A, the prediction equation could yield negative flow at C or if unusually heavy rain should occur above B, the flow could also be negative at C. Statistical routing results in a dilemma in that an increase in flow at B not accompanied by a commensurate increase at A results in a flow reduction at C.

This case is intended to demonstrate the basic problems with statistical routings. Although computers make such techniques easy to apply, unless each input component has a logical positive coefficient an invalid analysis will result. The high degree of interrelationship between independent variables makes it highly unlikely that the component will be evaluated in a physically realistic manner.

A second case is taken from the Manual of Hydrology [2]. This case also illustrates the inconsistency of a statistical approach even though for the data set investigated the statistical fit again appears superior to the storage routing method. There are two tributary and one mainstem inflows to this section (Figure 2). Data used, and the results of the storage analysis are indicated in Tables 1-3.

Techniques.

 $\begin{bmatrix} O_2 = C_{\circ} I_2 + C_{|} I_{|} + C_2 O_{|} \end{bmatrix}$

• 2

[C2=0.20(4570)+0.52(2710)+0.28(942)=2,590 cfs - Local Inflow to Brooklyn, March 18]

	Local Ir Brook		Thad to	Brooklyn	McKenzie Brookl		Andalus Brook			· .
	Γ=0.20 C _o =.20 C ₂ =.28	K=1.1 C ₁ =.52	$\Gamma = 0.2$ $C_0 = .01$ $C_1 = .41$	K=2.4 C ₂ =.58	Γ=0.2 C _o =.01 C _l =.41	K=2.4 C ₂ =.58	Γ=0.2 C _o =.06 C _l =.41	K=1.9 C ₂ =.50	Total Routed Outflow	Measured Outflow
	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow	Inflow	Outflow		
1944 March 16 17 18 19 20	500 2,710 4,570 5,890 6,070	500 912 2,500 4,280 5,480	552 766 947 1,630 2,520	552 554 645 778 I,I50	698 1,030 1,480 2,210 3,400	698 702 844 5,520 4,140	2,510 3,410 4,170 7,000 9,600	2,510 2,610 2,940 3,720 5,040	4,260 4,810 7,020 14,300 15,800	4,180 5,600 7,270 9,620 17,000
21 22 23 24 24 25	4,020 6,630 9,330 5,370 2,650	5,490 4,950 6,700 7,800 5,510	2,280 2,560 7,250 8,390 8,390	1,720 1,960 2,260 4,370 6,060	4,550 5,080 8,420 16,400 16,900	3,840 4,140 4,570 6,270 10,500	10,100 12,300 21,000 29,800 29,800	6,840 8,600 11,000 16,500 23,200	17,900 19,600 24,500 34,900 45,300	18,300 19,400 25,400 34,100 44,600
26 27 28 29 30	2,650 1,590 500 5,860 4,520	3,450 2,660 1,670 1,900 4,480	5,419 3,190 2,440 3,799 5,860	7,010 6,330 5,000 3,940 3,900	10,300 5,680 4,120 6,630 15,500	13,100 11,900 9,270 7,130 7,010	29,500 24,000 14,600 18,400 19,300	26,500 27,700 23,300 20,200 19,400	50,100 48,600 41,200 33,200 34,800	51,200 51,900 41,700 35,800 36,100
3 April 2 3 4	1,840 1,840 2,320 1,500 1,120	3,970 2,440 2,100 2,100 1,590	10,000 5,950 3,300 2,120 1,570	4,760 6,920 6,490 5,140 3,870	18,800 11,500 6,210 2,690 1,930	10,600 14,000 12,900 10,100 6,080	18,500 22,000 22,000 14,200 10,100	19,300 19,100 20,600 20,800 17,300	38,600 42,500 42,100 38,100 29,700	35,100 38,500 44,600 40,100 30,000
5 6 7 8 9	786 786 666 500 500	1,180 896 793 668 547	,220 998 830 718 671	2,900 2,190 1,690 1,330 k,070	1,480 1,170 925 800 742	4,850 3,430 2,480 1,830 1,400	7,950 6,340 5,410 4,210 4,170	3,600 0,700 8,460 7,190 5,700	22,500 17,200 13,400 11,000 8,700	20,600 3,700 10,300 8,530 7,710

Flow Techniques.

To obtain a comparison with a statistical approach, a correlation of observed outflow versus the inflows at time zero, one time period ago, two time periods ago and three time periods ago was prepared.

The statistical analysis was allowed to eliminate parameters which did not meet statistical tests for a valid analysis. Thus all parameters which were retained are considered statistically valid. The resulting coefficients and their individual sums are given in Table 2.

Flow at		lnfl	OWS	,
Time Now	0.5	-1.686	.471	.728
One Time Period Ago	1.05	-1.771	1.431	0.0
Two Time Periods Ago	0.0	0.0	0.0	.324
Three Time Periods Ago	0.0	0.0	.762	.231
Sums	1.05	-3.457	2.664	1.283
Sum of all coefficients = 1.540				

Table 2. Coefficients and Individual Sums from Statistical Analysis.

In addition, a constant of 720 has been provided by the analysis and must be added to the coefficient flow.

An error analysis of the two techniques indicates that the statistical method has provided an extremely accurate analysis. A comparison with the storage routing in the Manual of Hydrology [2] is shown in Table 3.

-4-

TABLE 3

ERROR ANALYSIS

			Statistical	Analysis
Measured Outflow	Total Routed Outflow	Absolute Error in Routed Outflow	Statistical Solution	Absolute Error in Statistical Solution
4,180	4,260	80	4,430	250
5,600	4,810	790	4,870	730
7,270	7,020	250	7,750	480
9,620	14,300	4,680	11,590	1,970
17,000	15,800	I,200	14,490	2,510
18,300	17,900	400	17,550	750
19,400	19,600	200	20,880	1,480
25,400	24,500	900	25,570	170
34,100	34,900	800	34,830	730
44,600	45,300	700	44,000	600
51,200	50,100	1,100	50,900	300
51,900	48,600	3,300	52,410	510
41,700	41,200	500	42,640	940
35,800	33,200	2,600	35,370	430
36,100	34,800	1,300	35,750	350
35,100	38,600	3,500	35,220	120
38,500	42,500	4,000	38,790	290
44,600	42,100	2,500	44,200	400
40,100	38,100	2,000	39,960	140
30,000	29,700	300	28,980	1,020
20,600	22,500	1,900	20,720	120
13,700	17,200	3,500	13,590	110
10,300	13,400	3,100	10,810	510
8,530	11,000	2,470	8,530	0
7,710	8,700	990	7,480	230
	Σ ERROR	43,060	Σ ERROR	15,140

-5-

Thus, the statistical analysis has resulted in an overall error about 1/3 the size indicated by storage routing. Storage routing does, however, possess the capability of maintaining volume during steady or variable flow. Let us test the statistical procedure under steady flow conditions.

Utilizing the two techniques and applying them to steady flow conditions yields the following cases.

Case I. Steady inflow of 2,000 cfs from each of the four inflow points.

Statistical Analysis

Inflow Inflow 2 Inflow 3 Inflow 4	1.05 × 2,000 -3.457 × 2,000 2.664 × 2,000 1.283 × 2,000	. =	
	Constant	= .	720
Total Flow from	Statistical Analysis	=	3,790

Analyzing the same data by the Storage Coefficients in the Manual of Hydrology yields,

Storage Routing

Inflow I (.20 + .28 + .52) × 2,000 = 2,000 Inflow 2 (.01 + .41 + .58) × 2,000 = 2,000 Inflow 3 (.01 + .41 + .58) × 2,000 = 2,000 Inflow 4 (.06 + .44 + .50) × 2,000 = 2,000

Total Flow from Storage Routing = 8,000

Thus, in Case I we have found that the statistical procedure has reduced the outflow to less than 1/2 what both reason and storage routing indicate.

Let us examine a second situation for more dramatic demonstration of the problem with application of statistical analysis.

Case 2.	A steady reservoir release of 2,000 cfs from Inflow 2,
	coupled with a nominal steady flow of 200 cfs from each
	of the other three inflow sites.

	Stat	istical A	nalysis
Inflow I	1.05	× 200	= 210
Inflow 2	-3.457	× 2,000	= -6,914
Inflow 3	2,664	× 200	= 533
Inflow 4	1.283	× 200	=257
Total Flow from	n Statistical An	alvsis	= -59 4 cfs

Under these circumstances, statistical analysis indicates the flow in the river has reversed and is flowing at 5,914 cfs in the opposite direction.

Storage Routing

Inflow 1 (.20 + .28 + .52) x 200 = 200 Inflow 2 (.01 + .41 + .58) x 2,000 = 2,000 Inflow 3 (.01 + .41 + .58) x 200 = 200 Inflow 4 (.06 + .44 + .50) x 200 = 200

Total Flow from Storage Routing = 2,600 cfs

Thus we have again arrived at an impossible solution applying a statistical analysis while the storage analysis is in agreement with a logical evaluation of steady flow.

A fantastic array of irrational conditions can be produced by applying statistical analysis, including the fallacy that if there is no inflow from any site, the outflow will be 720 cfs indefinitely.

Does this mean that statistics has no place in flood routing? The answer is, not as a direct routing tool. Statistics can be utilized as mentioned by Linsley, Kohler, and Paulus [1], but restrictions must be followed. These restrictions are:

- I. All inflow parameters must be linear.
- 2. Coefficients for each inflow point must be greater than zero.
- 3. The coefficient set for each inflow point must sum to unity.
- 4. The constant of regression must be zero.

A violation of any one of these rules is a violation of the law of continuity and will produce incorrect results. Since it is nearly impossible to impose these conditions on a direct statistical analysis, it should be clear that the function of statistics in flood routing is to serve as a mathematical tool for optimizing routing techniques which do not violate the law of continuity, not as a routing method by itself.

References

- Hydrology for Engineers, pages 229 233. Linsley, Kohler, and Paulus. McGraw-Hill, 1958.
- 2. Storage and Flood Routing; Manual of Hydrology: Part 3, Flood Flow Techniques. Geological Survey. Water Supply Paper 1543-B.