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Utilization of the Bulk Richardson Number, Helicity and 
Sounding Modification in the Assessment of the 

Severe Convective Storms of 3 August 1992 

Eric C. Evenson 
WSFO Great Falls 

I. INTRODUCTION 

On August 3, 1992, a severe 
thunderstorm developed during the early 

. evening hours over north-central 
Montana (Fig. 1). The severe 
thunderstorm dropped baseball-size hail, 
causing extensive damage to homes, 
vehicles, and crops. An FO tornado and 
one report of wind damage was also 
reported. 

When assessing the threat of severe 
weather, forecasters typically ask the 
question, "What type of storm structure 
can be expected"? One way to forecast 
storm type is through the use of the Bulk 
Richardson Number (BRN) as defmed by 
Weisman and Klemp (1982, 1984). The 
BRN involves a relationship between 
storm type, wind shear, and buoyancy and 
is especially useful in determining 
isolated supercell development. This 
study examines the conditions that led to 
the initiation of the severe convection, 
forecasting the location of severe 
weather, and assessing the type of storm 
structure using the BRN. The role of 
helicity and sounding modification is also 
examined. 

IT. COMPOSITE ANALYSIS 

Johns and Doswell (1992) note that 
composite analyses, prepared daily by the 
forecasters at the SEvere Local Storms 
(SELS) unit of the National Severe 
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Storms Forecast Center (NSSFC), are a 
useful technique in observing those 
meteorological parameters necessary for 
the development of severe local storms. 
From the composite chart, wind, 
moisture, and temperature patterns at 
various levels in the atmosphere can be 
visualized. Also, these patterns can be 
compared to the orientation of the static 
stability fields at a given time. The SELS 
forecaster uses the chart to help define 
and delineate areas in which severe 
thunderstorm development is most likely. 

The composite analysis (Fig. 2) valid at 
1200 UTC on 3 August showed several 
features conducive to the generation of 
severe thunderstorms. A north-south 
oriented stationary surface front 
extended from east of Cut Bank, Montana 
(CTB), through Great Falls (GTF) and 
southeast through Billings (BIL). Surface 
dew points were 50° F or greater over 
much of Montana east of the Continental 
Divide. At 850mb, southeasterly low
level winds of 25 knots prevailed across 
eastern Montana. Also at the 850 mb 
level, a thermal ridge extended from 
southern Alberta through western 
Montana and continued south into 
western Utah. Progressing upward to the 
700 mb level, a positively tilted short
wave trough was located across southern 
Alberta and into the northeast portion of 
Washington state. At 500mb, a low 
pressure trough and associated cold pool 
of air was situated over southeast British 
Columbia. Across eastern Washington 



state, northern Idaho, and western 
Montana, a mid-level wind maximum (500 
mb) of 35 knots was observed. Diffluence 
was also noted at 500 mb over northwest 
Montana. The 300 mb upper-air chart 
showed a strong jet maximum located 
over eastern Washington state illustrated 
by the observed 95 knot wind at Spokane 
(GEG). Lifted Indices (LI) of zero or less 
were observed from west-central Montana 
southwest into Idaho. Specifically, the 
1200 UTC sounding at GTF indicated an 
LI of -1. 

By 0000 UTC on 4 August, conditions had 
become more favorable for severe 
convection across Montana. The 
composite analysis (Fig. 3) at 0000 UTC 
showed several parameters converging 
across southern Alberta and north-central 
Montana. The surface frontal boundary 
was located east of a line from 
Lethbridge, Alberta (YQL) to GTF and 
extended south to Bozeman, Montana 
(BZN). Surface dew points remained 
above 50° F across portions of central and 
eastern Montana with dew points greater 
than 55°F across north-central Montana. 
The southeasterly jet maximum of 25 
knots at 850 mb remained across eastern 
Montana, as did the thermal ridge over 
southern Alberta, western Montana, and 
into western Utah. The positively tilted 
short-wave trough at 700 mb was 
propagating east across western Manitoba 
and north -central Montana. Warming 
temperatures in the lower layers of the 
atmosphere combined with cooling aloft 
associated with the thermal trough at 500 
mb advecting eastward, resulted in 
steepening lapse rates across north
central Montana. This contributed to a 
more favorable environment for severe 
convection by increasing potential 
instability. A 50 knot mid-level jet was 
also apparent moving across the central 
portions of Montana. The upper-level jet 
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maximum at 300 mb, previously located 
over eastern Washington state, was now 
over western Montana (the 0000 UTC 4 
August GTF sounding indicated a 79 knot 
wind at the 300 mb level). The jet 
maximum helped to create favorable 
speed shear north of the jet axis, and the 
left front quadrant of the jet maximum 
was placed across north-central Montana. 
McGinley (1986) and others note that 
this region is favorable for enhancing 
upward motion through the ageostrophic 
secondary circulation. 

Through the use of the composite charts 
(Figs. 2 and 3), the forecaster is now 
aided in visualizing the changing dynamic 
and thermodynamic structure of the 
atmosphere. This can help in narrowing 
down a region favorable for strong or 
severe thunderstorm development. In 
this particular case, the composite charts 
indicated north-central Montana as the 
area most conducive to severe weather. 

Ill. SURFACE ANALYSIS 

The 1800 UTC 3 August surface analysis 
(Fig. 4) showed dew points greater than 
50°F extending from southern Alberta 
across central Montana with a 6rF dew 
point noted at YQL. A frontal boundary, 
east of the Continental Divide, extended 
from north-central to south-central 
Montana. By 0000 UTC, the front had 
moved east and was located just east of a 
line from YQL to GTF and south to BZN. 
This frontal boundary had similar 
characteristics associated with those of a 
Southern Plains dry line. Warm, dry air 
existed west of the surface boundary 
while a relatively cool, moist air mass 
prevailed east of the boundary. Dry air 
aloft and steep lapse rates aided in 
transferring momentum to the lower 
layers of the atmosphere which 



contributed to the eastward progression 
of this boundary, as well as strengthening 
the moisture gradient found along it. 
The dew point at GTF decreased 18°F 
during the six-hour period from 1800 
UTC to 0000 UTC as dry northwesterly 
winds began to advance south along the 
east slopes of the Rocky Mountains. 
Between 1800 UTC and 0000 UTC, 
moisture pooled over north -central 
Montana and southern Alberta, as 
illustrated by the position of the 55°F 
isodrosotherm. As noted by Johns and 
Hirt (1987), increased low-level moisture 
contributes to greater positive buoyancy 
for a lifted parcel and lowers the level of 
free convection (LFC). This decreases 
the amount of dynamically induced lift 
necessary to initiate and sustain deep 
convection. The moisture gradient east 
of the Rocky Mountains continued to 
increase as noted on the 0000 UTC 4 
August surface analysis (Fig. 5). A dew 
point difference of 16°F existed between 
GTF and HVR as the drier, low-level air 
continued to filter southeast along the 
Continental Divide. 

The intrusion of drier air along the east 
slopes of the Rocky Mountains alerts the 
forecaster that this area has a decreased 
threat for the development of severe 
convection. Thus, the focal point of the 
operational meteorologist shifts to the 
area where the higher concentration of 
low-level moisture exists. 

IV. THETA-E ANALYSES 

A 700 mb theta-e ridge (Fig. 6) at 1200 
UTC on 3 August extended from 
Edmonton, Alberta (WEG) to GTF and 
south to Lander, Wyoming (LND). Last 
(1992) pointed out that equivalent 
potential temperature (theta-e) analyses 
are useful in locating areas of high 
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Convective Available Potential Energy 
(CAPE). A favored area for the formation 
of severe convective development, as 
noted by Campbell (1991), is along a 
theta-e axis. The 0000 UTC 4 August 
700 mb theta-e analysis (Fig. 7) indicated 
the theta-e ridge axis had now shifted 
into eastern Montana, enhancing the 
potential for severe thunderstorms. 

V. SOUNDING AND 
HODOGRAPH DATA 

The 1200 UTC 3 August GTF sounding 
(Fig. 8) showed marginal instability with 
the Showalter and Lifted Indices both 
indicating values of -1. Mielke's (1979) 
local program for measuring CAPE, 
computed 1,920 J /kg of buoyant energy 
in the sounding. The GTF hodograph 
(Fig. 9) showed significant veering in the 
wind field and increasing speeds from the 
surface through 9,000 feet (MSL). This 
type of hodograph favors the 
development of cyclonically rotating, 
right-moving supercells (Doswell 1990). 

The 0000 UTC GTF sounding on 4 
August (Fig. 10) showed the atmosphere 
had stabilized in the past 12 hours as the 
lowest layers had dried considerably. 
This corresponded to the drier air found 
west of the frontal boundary. The 
Showalter and Lifted Indices were now 
+ 1 and + 2, respectively. The threat for 
severe weather had now shifted east 
where the sharp dew-point gradient 
existed. The 0000 UTC GTF hodograph 
on 4 August (Fig. 11) showed a noticeable 
change in the structure of the wind field. 
Winds from the surface to about 8,000 
feet (MSL) prevailed from the northwest 
compared to the previous 12 hours where 
a southerly component to the winds 
existed. 



VI. BULK RICHARDSON NUMBER 

Severe weather can result from any type 
of convective storm, however certain 
storm types are more likely to produce 
severe weather than others. Being able 
to determine what type of convective 
storm may result from a given 
environment can be a valuable tool in this 
assessment. One such tool, the Bulk 
Richardson Number (BRN), is a 
relationship between wind shear and 
buoyancy. Observations and research 
from Weisman and Klemp (1986) suggest 
the BRN can be related to a preferred 
storm type. The BRN (R) is expressed 
by: 

R = B 
1/2U2 

where B is the buoyant energy in the 
storm's environment (CAPE) and U is a 
density weighted mean measure of the 
vertical wind shear through a relatively 
deep layer (0-6 km AGL). Lazarus and 
Droegemeier (1990) point out that the 
BRN is a bulk measure of the ambient 
shear and does not account for detailed 
aspects of the wind proflle, particularly 
low-level veering. The results obtained 
by Weisman and Klemp, in their 
numerical studies of convective storms, 
noted that for unsteady, multicellular 
storm growth, values of R were greater 
than 30. For isolated supercellular storm 
growth, values of R ranged between 10 
and 40. 

Weisman and Klemp (1986) note that 
although the magnitude of R may 
indicate a preferred cell type to be 
favored in a given region, it does not 
necessarily provide an indication to the 
severity of that convection. An example 
of this is an environment with small 
buoyant energy (B < 1000 m2/s2

) and 
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moderate 0-6 km wind shear (4 x 10 -3 s-
2). The value of R may be well within the 
range for supercell development, and a 
forecaster would then expect some of the 
convective storms to have the steadiness 
and propagation characteristics of 
supercell storms. However, since other 
factors are also important for severe 
convective development, one cannot be 
assured that given the existence of a 
supercell, severe weather will occur 
(Johns and Doswell1992). Also, an 
environment with large buoyant energy 
(B > 3500 m2 

/ s2
) and moderate 0-6 km 

wind shear may be characterized by a 
relatively large value of R, yet produce 
tornadoes or large hail with a relatively 
unsteady, or cyclic storm. 

In the case on 3 August, the 1200 UTC 
hodograph at GTF (Fig. 9) had an 
observed BRN value of 28 which is in the 
range determined by Weisman and 
Klemp for isolated supercell storm 
structure. As mentioned earlier, the 
buoyant energy at GTF was 1,920 J /kg 
and considerable wind shear was evident 
from the hodograph. This diagnosis can 
aid the forecaster in assessing not only if 
the threat of severe weather exists, but 
what type of storm structure will or 
should occur. 

The 0000 UTC 4 August GTF hodograph 
(Fig. 11) indicated a BRN value of 2, 
which did not fit into either category of 
multicellular or isolated supercell storm 
type. The influence of the dry, low-level 
northwesterly winds along the east slopes 
of the Rocky Mountains significantly 
altered the buoyancy and wind shear 
terms of the BRN equation. 

However, by modifying the low-level 
conditions (e.g., surface to 700 mb) of the 
GTF sounding to those near HVR in 
north-central Montana, a proximity 



sounding representing conditions near 
the area of possible severe weather can 
be constructed. This is achieved by 
substituting the surface data from HVR 
for GTF, and then interpolating values 
from the upper-air data at 850 mb and 
700mb. Through the substitution of 
these data, a modified HVR sounding and 
hodograph was constructed using the 
SHARP Workstation (Hart and Korotky 
1991). The 0000 UTC 4 August modified 
sounding for HVR indicated a positive 
buoyant energy of 2170 m2 /s2 (Fig. 12). 
The modified HVR hodograph (Fig. 13) 
produced a BRN of 24, which indicated 
an environment conducive for isolated 
supercell storm structure and 
development. Satellite photos (not 
shown) indicated that an isolated 
supercell developed over north-central 
Montana and moved south -southeast 
(330° ). This movement was noticeably to 
the right of the 0-6 km mean wind 
(252° ). This cell was responsible for the 
production of large hail and an FO 
tornado. 

Vll. HELICITY 

Although the BRN is a useful parameter, 
it is not as detailed of a predictor of 
storm rotation because it is a bulk 
measure and does not take into account 
details of the vertical wind profile. In 
recent years, special emphasis has been 
placed on the lowest 2 or 3 km of the 
atmosphere, usually below the level of 
free convection (LFC), which is 
considered the inflow layer into a 
convective storm. Storm relative helicity 
(Davies-Jones 1990) is an important 
parameter used to measure the potential 
storm rotation obtainable for a given 
environmental low-level wind field. 
Storm relative helicity (SRH) is the 
summation of the streamwise vorticity 
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through the storm inflow layer and 
indicates the rotation potential of a 
thunderstorm updraft. In other words, 
air parcels flowing toward the updraft 
region of a thunderstorm spin about a 
horizontal vorticity axis. When lifted into 
the updraft, this axis is tilted and 
stretched into the vertical and develops a 
cyclonic rotation. 

SRH is calculated on the SHARP 
Workstation as twice the area bounded by 
the hodograph between the storm inflow 
vectors at the top and bottom of the 
measured layer. SHARP uses an initial 
storm motion of 30 degrees to the right 
of the 0-6 km mean wind, and 7 5 percent 
of its magnitude (after Leftwich 1990) to 
get an estimate of the SRH. This would 
allow the forecaster an initial first guess 
as to the amount of SRH available in a 
given environment before the storms 
develop. Then, storm motion can easily 
be updated on the SHARP Workstation 
with the use of radar data, for example. 
In a study of 28 tornado cases, Davies
Jones (1990) found approximate ranges of 
0-3 km (AGL) SRH corresponding to 
tornado intensity. For weak tornadoes 
(FO-F1), helicity values were between 
150-299 m2 /s2 while for strong tornadoes 
(F2-F3), helicity values ranged from 300-
449 m2 js2

• Violent tornadoes (F4-F5) 
produced helicity values greater than 450 
mz;sz. 

Calculations of SRH were made by using 
the modified hodograph in section 6 and 
modifying the observed storm motion. 
Storm motion, initially calculated by the 
SHARP Workstation, indicated a storm 
motion of 286 degrees at 14 knots and a 
SRH of 157 m2 js2 (Fig. 13). Using the 
observed radar data, a storm motion of 
330 degrees at 15 knots was substituted 
for the SHARP Workstation storm 
motion. Given these modifications, the 0-



3 km SRH was 221m2 /s2 (Fig. 14) which 
is a considerable increase over the initial 
calculation of SRH. The increased SRH 
shows a greater rotation potential of the 
thunderstorm updraft. 

vm. CONCLUSIONS 

Severe convection initiated as a result of 
several key parameters: low-level 
moisture ahead of a sharpening moisture 
gradient as a front moved east into the 
HVR area; low-level convergence and a 
700 mb short-wave trough were present 
to provide dynamical forcing of the moist 
air; a thermal trough at 500 mb aided in 
destabilizing the atmosphere as mid-level 
cold air advection advanced into north
central Montana; the left front quadrant 
of a 300 mb jet maximum supported 
upward motion; and moderate values of 
buoyant energy existed. Composite 
analysis proved 'useful to graphically show 
all of the above features. This aided the 
forecaster in isolating north-central 
Montana as the area most favored for 
severe weather. 

The Bulk Richardson Number was 
utilized to assess the predicted type of 
storm structure for this particular 
environment. Modifications made to the 
sounding and hodograph data using the 
HVR surface and low-level observations, 
via the SHARP Workstation, led to a 
more accurate assessment of potential 
buoyant energy and vertical wind shear in 
the convective area. Storm relative 
helicity provided even further 
information about the low-level inflow (0-
3 km AGL) into a convective storm and 
its potential to generate cyclonic rotation 
and long-lived supercell thunderstorms. 

The forecaster may want to consider 
modification of the surface and upper-air 
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data features in close proximity to the 
severe weather threat area to derive a 
better representation of the near storm 
environment. AB in the above case, this 
can be a very valuable tool to forecasters. 

IX. ACKNOWLEDGMENTS 

I would like to thank John Mecikalski 
(University of Wisconsin) and Bob Johns 
(NSSFC) for their valuable insight into 
this project as well as Jeff Last (WSFO 
MKX) for his assistance with some of the 
modifications made on the SHARP 
Workstation. 

X. REFERENCES 

Campbell, M., 1991: Equivalent potential 
temperature (theta-e) applications. 
Western Region Technical Attachment 91-
37, NWS Western Region, Scientific · 
Services Division, Salt Lake City, Utah. 

Davies-Jones, R., D. Burgess, and M. 
Foster, 1990: Test of helicity as a tornado 
forecast parameter. Preprints, 16th 
Conference on Severe Local Storms, 
Kananaskis Park, Alberta, Amer. Meteor. 
Soc. 588-592. 

Doswell, C. A. ill, 1990: On the use of 
hodographs: vertical wind profile 
information applied to forecasting severe 
thunderstorms. Training Notes, NWS 
Southern Region Headquarters, 37 pp. 

Hart, J. A., and W. Korotky, 1991: The 
SHARP Workstation v1.50. A SkewT- . · 
hodograph research program for the IBM 
and compatible PC. NOAA/NWS, 
Charleston, West Virginia, 30 pp. 



Johns, R. H., and W. D. Hirt, 1987: 
Derechos: widespread convectively 
induced windstorms. Wea. Fest., 2, 32-49. 

Johns, R. H., and C. A. Doswell ill, 1992: 
Severe local storm forecasting. Preprints, 
Symposium on Weather Forecasting, 
Atlanta, Georgia, American 
Meteorological Society, 225-236. 

Last, J. K., 1992: Examples of significant 
thunderstorm initiation in identifiable 
low level theta-e patterns. Central 
Region Technical Attachment, NWS 
Central Region, Scientific Services 
Division, Kansas City, Missouri. 

Lazarus, S.M., and K. K. Droegemeier, 
1990: The influence of helicity on the 
stability and morphology of numerically 
simulated storms. Preprints, 16th 
Conference on Severe Local Storms, 
Kananaskis Park, Alberta, Amer. Meteor. 
Soc., 269-274. 

McGinley, J., 1986: Nowcasting Mesoscale 
Phenomena. Mesoscale Meteorology and 
Forecasting, (P. S. Ray, ed.), Amer. 
Meteor. Soc., 657-688. 

Mielke, K. B., 1979: A computer program 
for convective parameters. Natl. Wea. 
Dig., Volume 4, Number 3, 10-18. 

Weisman, M. L., and J. B. Klemp, 1982: 
The dependence of numerically simulated 
convective storms on vertical wind shear 
and buoyancy. Mon. Wea. Rev., 110, 504-
520. 

Weisman, M. L., and J. B. Klemp, 1984: 
The structure and classification of 
numerically simulated convective storms 
in directionally varying wind shears. 
Mon. Wea. Rev., 112, 2479-2498. 

7 

Weisman, M. L., and J. B. Klemp, 1986: 
Characteristics of isolated convective 
storms. Mesoscale Meteorology and 
Forecasting, (P. S. Ray, ed.), Amer. 
Meteor. Soc., 331-358. 



I 
------ ,--1----------····- --' ,_.. ------- z-·-------~----~~~~~~~~~~~~~-~~~~~~ 

I,_J·;l~::~[) Ka~~::l~~ \~, ' . 1 .. .... ~~A I 

') ··-t { ~ Chote.a'u-·-

~~~\ ~-~r1 -- --

CD 

£ ~·7is~;~. \.He\e~~ 
• l)--

0 .. -1__, \;-/~ --.'.,_But\te ~~- _ !.) J 
' ~ \_/~ s:__" Boze an 

\ t_, ~--1 • -
\ ·-.. l . ~ I . 

"\ ~ 
\ J----- r·---- I - ~ ----~ 

Tw 

* Gilford 

Jordan 
• 

A 

Figure 1: Plot of known severe weather events across Hill county in north-central Montana on 3 August 
1992. (Reports from Storm Data and local storm reports.) T = tornado W; = wind damage 
A = hail greater than 3/4 inch diameter. 
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Figure 2: Composite analysis at 1200 UTC on 3 August 1992. Arrow represent jet maxima at various 
levels. Dotted line represents the 850 mb thermal ridge. Large dashed line denotes 700 mb shott wave 
trough. Triangular line indicates thermal trough at 500 mb. Jagged dot-dashed line represents 
diffluence at the 500 mb level. Thin dashed lines represent surface isodrosotherms analyzed every 5o F 
( >50 oF). Stippled area denotes Lifted Indices less than or equal to zero. 
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Figure 7: 0000 UTC 700 mb equivalent potential temperature analysis on 4 August 1992. Solid lines 
represent equivalent isentropes analyzed every 5K. 
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Figure 8: 1200 UTC Great Falls, Montana. ",F) SkewT-logP sounding on 3 August 1992. 
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