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1. INTRODUCTION
Snowfall observations across southeast Idaho are sporadic in nature and vary widely
with regard to accuracy, coverage, and timeliness. Official snowfall measurements have
been recorded at the Pocatello National Weather Service (NWS) office on a 6- and
24-hour basis since 1939. Additional observations are collected through the NWS
Cooperative Observer Program (COOP) covering a 24-hour observational period at
varying times of the day while the Community Collaborative Rain, Hail, and Snow
(CoCoRaHS) volunteer network can span any number of time-scales. To compound
matters, no automated platforms, outside of a handful of Snow Telemetry (SNOTEL)
sites equipped with acoustic sounding devices, report snowfall directly. The vagaries
between these systems allow for little if any intercomparison or consistent reporting of
snowfall over time and space. In an effort to overcome these shortfalls, the present
work seeks to reformulate the widely discarded New Snowfall to Estimated Meltwater
Conversion Table (hereafter referred to as MCT; U.S. Department of Commerce 1996;
NWS Observing Handbook No. 7) while also developing an Ordinary Least Squares
(OLS) regression model in the hope that either or both of these models might prove
useful in conjunction with output from automated meteorological platforms in producing
reasonably accurate, timely, and consistent snowfall estimates in an operational setting.

2. DATA
The Kühtai automated data set (Krajci et al. 2017) was selected for use in this study due
to its longevity, quality, availability, and concomitant manual snow depth measurements.
The site is located approximately 30 km (19 mi) west of Innsbruck, Austria at an
elevation of 1920 m (6299 ft) MSL and 47 degrees north latitude in an Alpine climate
roughly similar to that found in the northern Rockies which borders a large portion of
southeast Idaho. Of primary use here were the automated 15-min snow water
equivalent (SWE), water equivalent precipitation (Pcpn), incoming shortwave radiation,
air temperature (T), relative humidity, wind speed and direction, and ultrasonic snow
depth (SND) meteorological data, as well as the the 0700 LT manual snow depth
measurements (SNDM) taken at the observation site each day. Gross quality control
(QC) measures were also applied by the custodial agency during initial post processing
of the data (Krajci et. al. 2017).

Due to the limitations associated with the 24-hour manual snow depth measurements
taken at the observation site, a daily summary file ending at 0700 LT was constructed
from the 15-minute meteorological data. The 24-hour change in SNDM and the
maximum daily change in SND were both used as proxies for new snowfall. Visual
inspection of days with new snowfall revealed noticeable event-to-event snowfall
(SNDM) variability among similar Pcpn-SWE days (not necessarily a bad thing) while a
smaller number of days exhibited noticeable intraday elemental incongruities, possibly
associated with questionable or errant data values. Much of the event-to-event
variability could have been plausibly explained by common meteorological processes



noted during the observational period such as wind or melting. Since the thrust of this
study was intended to develop a model that could produce reliable operational snowfall
estimates, cases displaying destructive post-snowfall meteorological processes, namely
wind, wind packing, radiational melting, sublimation, and exaggerated settling were
removed from the formal analysis although displayed in the figures throughout the
model development process. Normal melting processes associated with warm ambient
temperatures during the snowfall events were included in the analysis in order to
provide a seamless thermal model for snowfall. Records that were deemed
unintelligible were not included in the analysis and were labeled as OtherSnw in the
figures. Every effort was made to retain salvageable data.

Entwined in the general culling process described above and based on the need to
address some of the interelemental incongruities observed in the data, each record was
subjected to a circuitous “optimizing” technique. During a preliminary workup on a
smaller subset of data, an MCT-like table was created. The table was subsequently
used to produce snowfall estimates based on the observed Pcpn, SWE, and Average of
the Pcpn and SWE in conjunction with the average temperature (Tavg) observed during
the snowfall events. These MCT-like estimated snowfall values were then compared to
the observed SNDM and SND values. The combination of variables and associated
snowfall estimates producing the most coherent (or “Best”) match with the observed
snowfall values (SNDM or SND) were retained for further analysis.

3. MODEL SPECIFICATION
A broad body of research has been conducted over the years regarding cold-cloud
precipitation processes and the development, growth, and modification of snow crystals
and resulting quantitative snowfall. Cobb and Waldstreicher (2005) provide an excellent
synopsis and background of much of this work which will not be repeated here other
than to note that atmospheric temperature, moisture, and vertical motion as well as
spatial and orographic effects (Judson and Doesken 2000) play a complex role in the
snowfall process. Given the limitations associated with the surface-based observational
Kühtai data set, only a narrow subset of this body of work will be considered in this
study.

A. Preliminary Data Survey
Prior to the culling and optimizing process described in section 2, all available
meteorological variables (independent variables) captured in the Kühtai data set
where the maximum daily temperature was below freezing were compared to
SNDM (dependent variable) to see if any visible correlations were evident that
might prove useful in the redevelopment of the MCT and in the specification of an
OLS model. The comparisons that showed promising results are presented
below.

The related variables of Pcpn, SWE, and the Average of the Pcpn and SWE data
each showed similar results. Figure 1 is a traditional depiction of a fitted line plot
for the 24-hour change in snow depth (SNDM) (dependent variable) versus the
Average of Pcpn & SWE (independent variable). The accompanying regression
statistics indicated that the independent variable accounted for over 67% of the
variance (r2=0.671) in the dependent variable with a standard error of the



regression (S) of a little over 1.9 in (5.0 cm). It was also evident that
questionable data was present within the sample given the number of
observations showing high values of water equivalent precipitation and
correspondingly low SNDM (see red oval in Fig. 1) for days where the maximum
daily temperature was below freezing.

Figure 1. Avg of Pcpn & SWE vs the 24-hour Change in Snow Depth (SNDM).
r2=0.671, Adjusted r2=0.670, S=1.953, p-value=1.4E-111. Potential QC issues
highlighted within the red oval.

A plot of the residuals (Fig. 2) showed a clear case of heteroscedasticity - a fan
shape or unequal scatter in the residuals. For now, it is important to understand
that heteroscedasticity does not produce bias but it can adversely impact the
precision of regression coefficients in an OLS model if not addressed. It can also
produce p-values that are smaller than they would otherwise be, leading one to
conclude that a regression term is statistically significant when it may not be.
This issue will be treated in much greater detail in Section 3.C where the
development of an OLS regression equation will be covered.

The next variable that was expected to show a promising relationship was
temperature. At first blush, Figure 3 appears to show little if any relationship
between snowfall and the average temperature (r2 =0.017). But upon closer
inspection, a number of interesting details emerge.

The first item of interest is the apparent peak in the 24hr change in snow depth
occurring with a surface temperature falling roughly between -5.6 and -3.3oC



Figure 2. Plot of the residuals by the fitted values for Figure 1.

Figure 3. Average Temperature during the period in which Pcpn & SWE were
recorded versus the 24-hour Change in Snow Depth. r2=0.017, Adjusted
r2=0.015, S=3.373, p-value=0.0047.



(22-26oF). Examining the terrain surrounding the Kühtai observation site, there
are several mountain ranges towering to 2835-2987 m (9300-9800 ft) MSL which
is roughly 980 m (3215 ft) above the site elevation. Using the ridgetop
(approximately 2895 m (9500 ft) MSL) as a proxy for winter-time cloud base and
an additional 1220 m (4000 ft) for subjective average winter-time cloud depth and
a moist adiabatic lapse rate of -4oC/km (-3.3oF/1000 ft) during snowfall events
(Alcott and Steenburgh 2010), one might expect to see cloud temperatures that
range from -9.2oC to -18.8oC (15.4oF to -1.8oF) which loosely corresponds to the
maximum dendritic growth zone (-12oC to -18oC (10oF to 0oF)) reported by
Fukuta and Takahashi (1999). In turn, the maximum dendritic growth zone is
known for the production of high snowfall rates and high snow-to-liquid water
ratio dendritic snowfalls (Cobb and Waldstreicher 2005), possibly explaining the
observed peak in the graph.

Secondly, for any particular temperature value selected in Figure 3, a strikingly
wide range of 24hr change in snow depth (SNDM) values are possible which
appears to be primarily the result of the water equivalent precipitation associated
with each of the individual observation points. To get a truer sense of the impact
of temperature on SNDM, we would need to account for the complex interaction
effects associated with the water equivalent precipitation. Aggregating the water
equivalent precipitation values into subjective incremental groupings and
redisplaying those groupings in a color-coded format (Fig. 4), one can see a fairly
coarse relationship emerge.

Figure 4. As in Fig. 3, except Average Temperature values are coded (icon and
color) based on progressively larger aggregated groupings of Water Equivalent
Precipitation.



Figure 5. Calculated Snow from the MCT using the Average of Pcpn and SWE
and the Average Temperature during Pcpn events versus the 24-hour Change in
Snow Depth. r2=0.664, Adj r2=0.664, S=1.972, and p-value=1.1E-109

One other correlation that was found to be of interest was the relationship
between the estimated snowfall using the original MCT and the observed SNDM
values as shown in Figure 5. A modest goodness-of-fit (r2=0.664) was depicted
while the MCT values consistently over predicted snowfall (a bias effect) when
compared to the observed SNDM amounts, which was a point cited in previous
research by Roebber et al. (2003) and Alcott and Steenburgh (2010), among a
number of other researchers.

B. Redevelopment of the MCT Relationship
Roebber et al. (2003) reported that the original MCT was developed as a quality
control aide at the National Center for Environmental Information (NCEI) without
providing any further documentation or insight on how it was created. The
following methodology, although rudimentary and subjective in nature, was
expedient and provided fairly useful results. Utilizing the culled and optimized (or
“Best”) data set described in Section 2 above, a sample was drawn which
included records where the average temperature during the precipitation event
was 2.0oC (35.6oF) or colder with measurable water equivalent precipitation
(Pcpn > 0.0 mm) and snowfall (SNDM or SND > 0.0 cm). The data were then
iteratively sorted and regrouped in an attempt to reproduce the temperature and
water equivalent associations found in the original MCT. First, the data were
sorted from highest average temperature to lowest and then subjectively
aggregated into 1.7oC (3.0oF) temperature ranges. Each of these
temperature-aggregated subdivisions were then further sorted from lowest
Average Pcpn & SWE to highest. Finally, in an effort to ascertain the optimal
temperature-meltwater-snowfall relationship, the Average Pcpn & SWE and



associated snowfall data falling within a subjective range of meltwater values
were gathered within each of the temperature subdivisions so as to adequately
populate a Box and Whisker plot from which the median snowfall value was
culled for each temperature-meltwater aggregation (e.g., Figure 6). The median
temperature, meltwater, and snowfall values gathered from a series of similar
such plots were then used to produce temperature-meltwater curves for the
various snowfall values (see Figure 7).

Figure 6. Box and Whisker Plot of the 24-hour Change in Snow Depth (SNDM)
for select 1.7oC (3.0oF) temperature intervals (e.g. T31to34) with an Average
Pcpn & SWE (meltwater) value falling between 10.1 and 12.7 mm (0.40 and
0.50 in), inclusive.

These meltwater-temperature curves were then utilized as the starting point for
further subjective development. Clearly, the Box and Whisker exercise did not
eliminate all questionable data as revealed in the MW80 (yellow) and the MW120
(blue) curves which exhibited a visible lack of consistency when compared to
nearby curves. Also, due to the limited size of the sample set, the optimum
range of use for the curves was limited to temperature values falling between
-11.7 and 1.7oC (11 and 35oF) and water equivalent values of approximately 25.4
mm (1.0 in) or less. The following observations and rationale were used to make
subjective adjustments to the curves and to extend them beyond these optimal
bounds:



Figure 7. Standard line plots of Median Snowfall (in) versus Average
Temperature (oF) during precipitation events for subjectively defined water
equivalent precipitation (or meltwater) ranges with median values varying from
0.8 to 43.2 mm (0.03 in (MW03) to 1.70 in (MW170)).

1. It appeared that the arc on the preponderance of the curves (MW90 and lower)
at the warm end of the spectrum, if extrapolated beyond 1.7oC (35oF) using the
slope given by the values between 0 and 1.7oC (32 and 35oF), would terminate at
0.0 cm (0.0 in) of snowfall somewhere between 1.7 and 3.3oC (35 and 38oF).
Outside of convective or rapidly accumulating snowfall events, 3.3oC (38oF)
appeared to be a reasonable termination point (at least for the current work) for
accumulating snowfall.

2. With the exception of several conspicuous points and arcs, the arc on each
successively larger meltwater-temperature curve appeared to follow a
progressively amplified and concave downward trace. Identifying those arcs with
the most reliable curves and/or curve segments and leveraging that information
to “inform” the less reliable or truncated curve segments might prove useful in
extending the curves, especially in sparse data regions and/or at the extremes of
the observational data set.

3. The arc on the preponderance of the curves (MW90 and lower) at the colder
end of the spectrum terminates between -13.3 and -10.0oC (8 and 14oF).
Operational experience and research (Fukuta and Takahashi 1999) might
suggest that snowfall accumulations would likely remain steady or gradually fade



with colder temperatures due to the change in ice crystal habit toward smaller
plates.

Given these assertions and subsequent subjective adjustments, the following
temperature-meltwater curves (Fig. 8) were constructed. Figure 9 shows the
best case scenario where the new temperature-meltwater curves are applied to
the “Best” coupled temperature, snow depth, and SWE-Pcpn values in each
record to produce an estimated snowfall value. To be clear, utilizing the
optimizing process minimizes the interelemental integrity issues identified
previously and provides an indication of what might be expected from the
temperature-meltwater curves under ideal and perhaps unrealistic automated
observational data quality conditions. Besides the very promising correlation
values (r2=0.975 for the Standard and Melting categories combined), we see a
nearly one-to-one relationship that is no longer biased towards exaggerated
estimated snowfall values as was observed with the original MCT table (as seen
in Fig. 5). Independent tests of these curves are shown in Section 4.

Figure 8. Same as Fig. 7, except subjectively modified and extended as
enumerated in the text discussion.



Figure 9. Calculated Snowfall from the Temperature-Meltwater Curves (Fig. 8)
using the Best Water Equivalent and Average Temperature during observed
Pcpn values versus the Best 24-hour Change in Snow Depth (SNDM or SND).
r2=0.909, Adj r2=0.909, S=0.849, and p-value=0.000 for all data and r2=0.975, Adj
r2=0.975, S=0.499, and p-value=3.8E-285 for Standard and Melting data
categories only. Inset of r2=0.978 is for the Standard data category only.

C. OLS Model Development
The preliminary survey results (Section 3.A above) suggested that the main
effects (most relevant correlations) associated with snowfall were the total water
equivalent precipitation observed and the average temperature observed during
the precipitating event. In addition, complicating factors associated with
heteroscedasticity and potential interaction effects needed to be considered
and/or resolved. The culled and optimized (or “Best”) data set described in
section 2 was used to develop the OLS model in further detail in the following
sections.
1. Main Effects

a. Meltwater
Here we see a robust correlation (Fig. 10) with Best Meltwater accounting
for over 76% of the variance observed in the Best Snow Depth with a
standard error (S) just under 1.54 in (3.91 cm). Once again, we see a
fan-shape in the residuals (Fig. 11) indicating a problem with
heteroscedasticity (Frost 2019).



Figure 10. Best Meltwater vs the Best Snow Depth. r2=0.762, Adjusted r2=0.761,
Standard Error (S)=1.5355, and p-value=3.1E-112 for the Standard and Melting data
set. Inset is for Standard data set only.

Figure 11. Plot of the residuals by the fitted values for Figure 10.

b. Average Temperature
As was previously discussed in Section 3.A, the correlation between
temperature and snowfall is not readily discernible until you consider the
interaction effect with meltwater. If you consider the underlying interaction
between temperature (AvgT), meltwater (MW), and snowfall, an
identifiable relationship becomes more apparent as highlighted in Figure



12. Each of these individual temperature-meltwater relationships are
represented fairly well by a second order polynomial (quadratic equation)
and will be explored further in Section 3.C.2.b where we deal with
Interaction Effects.

Figure 12. AvgT vs the Best Snow Depth with various meltwater (MW) values color
coded (e.g., 0.08 in (green), 0.16 in (gold), 0.24 in (orange), and 0.31 in (purple))
along with the corresponding 2nd order polynomial (quadratic) curve fitting the data
values (e.g., Poly. (Standard MW08) for meltwater values of 0.08 in).

2. Special Considerations
a. Heteroscedasticity
There are two types of heteroscedasticity - impure and pure (Frost 2019
here and following). Impure heteroscedasticity refers to cases where you
incorrectly specify the model by leaving out one or more important
variables which are then absorbed into the error term of the regression
equation. If the effect of the omitted variable(s) varies throughout the
observed range of data, it can produce telltale signs of heteroscedasticity
in the residual plots. Pure heteroscedasticity refers to cases where you
specify the correct model and yet you observe non-constant variance in
the residual plots. This occurs most often in data sets that have a large
range between the smallest and largest observed values and/or are not
normally distributed. In the present case, all of these issues are likely
occurring as the dependent variable (Best Snow Depth) and independent
variable (Best Meltwater) both span two orders of magnitude and are not
normally distributed (not shown), and we have yet to test a model that
contains all of the identified variables. There are a number of methods
that are commonly used to correct cases of pure heteroscedasticity such
as redefining the variables, weighted regression, and/or transforming the
variable(s). Finding the right fit is to some extent an iterative process of



adjusting the variables, fitting the model, and checking the residuals until
the desired effect is achieved (Frost 2019 and PennState 2021). In the
interest of brevity, the square root transformation of the meltwater and
snowfall variables was found to provide the best resolution for the
heteroscedasticity issue. As a result, these variables were used in further
development of the OLS model as demonstrated below.

b. Temperature and Meltwater Interaction Effects
Figure 13 is a three-dimensional enhancement of the temperature and
meltwater interaction presented earlier in Figure 12. Here we get a much
clearer visual sense of the complex interaction between temperature and
meltwater, and their combined impact on snowfall. As was noted
previously, a 2nd order polynomial (quadratic) curve appeared to capture
this effect adequately and was used in further development of the OLS
model.

Figure 13. Three-dimensional plot of Temperature (AvgT, oF) vs Best Meltwater
(in) vs Best Snowfall (in) for the Standard data set. Various meltwater values
have been color coded: 2.03 mm (0.08 in) (green), 4.06 mm (0.16 in) (gold), 6.1
mm (0.24 in) (orange), 7.9 mm (0.31 in) (purple), 9.7 mm (0.38 in) < meltwater <
10.7 mm (0.42 in) (cyan), 13.2 mm (0.52 in) < meltwater < 15.2 mm(0.60 in) (dark
pink), and 18.5 mm (0.73 in) < meltwater < 21.8 mm (0.86 in) (salmon). Vibrant
colors in the foreground represent the actual data points while the
semi-translucent colors are projected as a shadow on the various axes to help
visualize the three-dimensional distribution of the data.



3. Results
In an effort to account for the effects of heteroscedasticity and the complex
interaction between temperature and meltwater, we performed a multiple
regression analysis utilizing the transformed meltwater (Sqrt MW) variable,
average temperature (T), the nonlinear quadratic contribution of average
temperature (T^2), and the interaction between the nonlinear average
temperature and transformed meltwater (T^2*Sqrt MW) variables as the
independent variables and the transformed snowfall (Sqrt Best Snowfall) as the
dependent variable. The variables were centered to account for and reduce the
multicollinearity effects artificially introduced by the use of the interaction variable
(T^2*Sqrt MW). Table 1 reflects the statistically significant results that collectively
account for over 96 percent of the variance observed in the Sqrt of Best Snowfall.

Table 1. Multiple Regression Results for Sqrt of Best Snowfall vs Sqrt Best
Meltwater, AvgT, AvgT2, and AvgT2*Sqrt Best Meltwater Interaction. Note the
p-values on all the variables are statistically significant.

The resulting OLS snowfall equation is presented below:

Snowfall = [1.8692 + 3.6460(MW1/2 - 0.55) + 0.1028(AvgT - 24.98) -
0.0026(AvgT2 - 653.46) - 0.0011(AvgT2 * MW1/2 - 359.14)]2 ,

where snowfall and meltwater (MW) are in inches and the average temperature
during the precipitation event (AvgT) is in degrees Fahrenheit.

After applying the Snowfall equation above to the Kühtai data set, the fitted line
plot (Fig. 14), residual plot (Fig. 15), and normal probability plot (Fig. 16) all
showed very encouraging results. The fitted line plot showed no bias while the



residual plot appeared to be equally distributed about the zero mean throughout
the entire range of fitted values with little or no heteroscedasticity evident.

Figure 14. Predicted Snow vs Best Snowfall. Inset for the Standard and Melting
data set only.

Figure 15. Plot of the residuals by the fitted values for Sqrt Snowfall in Figure 14.



Figure 16. Normal Probability Plot for Best Snowfall in Figure 14.

Upon closer examination of the normal probability plot (Fig. 16), a slight
S-shaped curve was evident in the depiction which is typically indicative of
shorter than normal tails or insufficient variance (SkyMark 2021). A normality test
of the residuals (Georgiev 2021, not shown) confirmed this suspicion both in the
failed empirical tests as well as the associated histogram. Based on this
evidence, we concluded that the residuals were not normally distributed thus
violating one of the optional OLS assumptions (Frost 2019 and 2021). When the
residuals fail the normal distribution assumption, it precludes the use of
significance levels and significance tests in the verification of the model and in
this case the use of the Lower and Upper 95% Confidence Intervals displayed in
Table 1.

4. INDEPENDENT TEST RESULTS
Two independent data sets were constructed and used to test the redeveloped MCT
curves and OLS results for their suitability in an operational setting. The first data
set was constructed from the 6-hourly supplemental snowfall and precipitation
climate data captured at the Pocatello Weather Forecast Office since 2013
(hereafter referred to as the Pocatello Data Set). Hourly, 6-hourly, and bulk average
temperature, precipitation, and wind data collected from the Automated Surface
Observing System (ASOS) located 2.3 km (1.4 mi) northeast of the office were used
to augment the 6-hourly supplemental climate measurements. The second data set
was constructed from manual snowfall observations taken by the Sun Valley Resort
ski operations and augmented by automated observations collected from the Sun
Valley Bald Mountain (SVB) SNOTEL site from 2015 through 2020 (hereafter
referred to as the Sun Valley Data Set). The SVB SNOTEL site was located in an
exposed area near the top of Bald Mountain (43.6612o lat, -114.40315o lon) 3.9 km
(2.4 mi) southwest of Ketchum at an elevation of 2747 m (9013 ft) MSL and the ski
operations manual observation site was located in a wind-sheltered area northwest



of the SVB SNOTEL site approximately 188 m (617 ft) at an elevation of 2700 m
(8860 ft) MSL. The manual snowfall observations were collected each morning at
0600 LT. Automated 15-min observations of temperature, relative humidity,
precipitation accumulation, snow depth from an acoustic sounder, and wind speed,
direction, and gusts were collected from the SVB SNOTEL site. These data were
consolidated and processed into a daily summary record ending at 0600 LT in
exactly the same manner as the Kühtai automated data set.

A. Redeveloped MCT Results
1. Pocatello Data Set

Snow days from 2015 to 2020 where the maximum temperature (Tmax) was
3.3oC (38oF) or less and the sum of the hourly wind observations (Wtot) for
the day fell below 89.8 m/s (201 mph) were utilized in conjunction with the
redeveloped MCT curves (Fig. 8) to calculate daily snowfall accumulations
from hourly (Fig. 17), 6-hourly (Fig. 18), and bulk (Fig. 19) time-scale
renderings to examine the corresponding results.

Figure 17. Daily sum of hourly snowfall estimates calculated using the
redeveloped MCT curves (or New MCT Table) for snow days with Tmax < 3.3oC
(38oF) and Wtot < 89.8 m/s (201 mph) at Pocatello (PIH) from 2015-2020.
r2=0.8311 (inset), Adj r2=0.8287, S=0.4275, and p-value=9.67E-29. The red line
represents the best fit regression line and the orange lines represent the
standard error (S). Circled values (o) represent the daily total hourly snowfall
estimates.



Figure 18. Daily sum of 6-hourly snowfall estimates calculated from the
redeveloped MCT curves (or New MCT Table) for snow days with Tmax < 3.3oC
(38oF) and Wtot < 89.8 m/s (201 mph) at Pocatello (PIH) from 2015-2020.
r2=0.7813 (inset), Adj r2=0.7781, S=0.4806, and p-value=3.90E-24. The red line
represents the best fit regression line and the orange lines represent the
standard error (S). Starred values (*) represent the 6-hourly synoptic snowfall
subtotals. Circled values (o) represent the daily total 6-hourly snowfall estimates.

Regarding the daily sum of hourly snowfall estimates (Fig. 17), we see a
definite over-forecast bias, improving with the daily sum of the 6-hourly
snowfall estimates (Fig. 18), and ending with no forecast bias indicated in
the bulk snowfall rendering (Fig. 19). Also of interest here is the increased
scatter observed when moving from the hourly to the bulk rendering which
had a deleterious impact on both the goodness of fit and the standard error
statistics for the bulk case. These results likely suggest that the hourly
rendering does a good job of capturing the short term snowfall vagaries
associated with natural temperature and precipitation variability observed
within a storm cycle while failing to account for the densification,
overburden, and metamorphosis of the snowpack normally observed during
a 24-hour observation period ultimately resulting in the over-forecast bias.
The opposite is most likely occurring in the bulk application where much of
the dynamic hourly interplay is attenuated resulting in greater scatter while
the metamorphosis of the snowpack is “encapsulated” as it were within the
model resulting in the non-biased outcome.



Figure 19. Daily bulk snowfall estimates calculated from the redeveloped MCT
curves (or New MCT Table) for snow days with Tmax < 3.3oC (38oF) and Wtot <
89.8 m/s (201 mph) at Pocatello (PIH) from 2015-2020. r2=0.7640 (inset), Adj
r2=0.7605, S=0.4993, and p-value=5.26E-23. The red line represents the best fit
regression line and the orange lines represent the standard error (S). Starred
values (*) represent the 6-hourly synoptic snowfall subtotals. Circled values (o)
represent the daily bulk snowfall totals. See text concerning enumerated data
points 1-6.

In an effort to test these suppositions, a number of outlying points were
identified in the bulk application (see enumerated points in Fig. 19) with a
more granular examination of each case provided below. Points 1 through 3
were utilized to examine those cases that were underestimated by the
model and points 4 through 6 represented those cases that were
overestimated. At sample point 1, the hourly data indicated temperatures
rising abruptly from -0.5oC (31oF) at 23:53 UTC to 1.1oC (34oF) at 00:37
UTC after recording 1.27 mm (0.05 in) of precipitation. If the bulk
calculation had been done using the average temperature found during the
time the “measurable” precipitation was observed (in this case -0.5oC
(31oF)), the redeveloped MCT curves suggest that the bulk snowfall
estimate would have been 2.8 cm (1.1 in) which would have brought the
observed and estimated points into much closer agreement. For point 2,
the temperature dropped steadily over the course of several hours from
-6.1oC (21oF) to -7.2oC (19oF) with light to moderate precipitation ongoing
throughout the entire six-hour event. During the period of heaviest snowfall,
sustained wind speeds peaked at 7.6 m/s (17 mph). It was at this time that



a suspicious 6-hourly snowfall observation of 6.9 cm (2.7 in) was recorded.
The recorded observation was roughly 2.3 cm (0.9 in) more than anticipated
given the temperature and precipitation values recorded during that time
frame, raising concern that perhaps either an undercatch of liquid was
recorded in the precipitation gauge and/or an excess of wind-deposited
snow was measured on the snow board. In either case, there appeared to
be a notable lack of coherence between the measurements. For point 3,
the hourly observations showed a gradual swing in temperatures from
-6.1oC (21oF) to -9.4oC (15oF) and back up to -5.0oC (23oF) over the course
of a 14-hour period. During this time, the heaviest hourly precipitation
occurred when the temperature was at or near -9.4oC (15oF). The bulk
average temperature for the entire time frame was -6.7oC (20oF).
Regardless of whether -9.4oC (15oF) or -6.7oC (20oF) was used in the
calculation, the redeveloped MCT curves showed a similar outcome of 8.4
cm (3.3 in) of total snowfall which remained well below the 11.7 cm (4.6 in)
value reported for the day. In this instance, it may have been instructive to
review radar imagery and/or the vertical temperature profile to ascertain
whether mesoscale enhancements and/or vertical thermal profiles and lift
may have played a part in producing conditions conducive to enhanced
dendritic snow growth during the observation period. At point 4, 2.0 mm
(0.08 in) of precipitation was recorded under light winds and steady
temperatures near -7.8oC (18oF). Under these conditions, the redeveloped
MCT curves suggested 4.6 cm (1.8 in) of snowfall while the observation
indicated a questionable 1.8 cm (0.7 in) snowfall event. Again, it may have
been instructive to review the vertical temperature profile for this period to
determine the potential crystalline structures of the snowfall before labeling
the observation as potentially errant. For point 5, we see an extended
period with trace precipitation amounts and temperatures ranging from
-8.9oC (16oF) to -7.2oC (19oF) followed by a period with measurable
precipitation and warmer temperature readings near -5.6oC (22oF). Here,
the longer and colder period with trace amounts of precipitation is equally
weighted with the shorter and warmer period with measurable precipitation
effectively skewing the bulk average temperature used in the calculation
toward a lower value of -7.2oC (19oF) resulting in an elevated snowfall
estimate. If -5.6oC (22oF) were used for the bulk average temperature, the
resulting estimate of 4.1 cm (1.6 in) would have been much more
comparable to the observed 2.8 cm (1.1 in) snowfall. At point 6, we have a
period with very cold -13.3oC (8oF) ambient temperatures and precipitation
accumulating to 2.3 mm (0.09 in) within a 6-hour period followed by a
questionably low snowfall report of 2.0 cm (0.8 in). Under these conditions
the redeveloped MCT curves suggest a 5.1 cm (2.0 in) snowfall. Recall that
the redeveloped MCT curves were subjectively extended to capture colder
events such as this and this case may very well suggest the need to revise
the curves lower for these colder events.



2. Sun Valley Data Set
Snow days from 2015 to 2020 where the maximum temperature was 3.3oC
(38oF) or less were utilized in conjunction with the redeveloped MCT curves to
estimate snowfall for the Sun Valley site. Figure 20 depicts the calculated
snowfall for the SVB SNOTEL data versus the manually observed 24-hour
snowfall reported by the Sun Valley Resort ski operations staff. The statistical
results show a very slight overpredictive bias with a modest correlation
accounting for about 87% of the variance (r2=0.8743) in the Observed
Snowfall and a standard error of 1.08 in (2.7 cm) for the windy, melting, and
standard data sets combined. Here we have included the windy data set in
the calculation due to the relatively small number of melting and standard
cases available at this wind prone site. By doing so, it is believed that the
windy data set likely introduced snowfall data that may have undergone
enhanced densification due to fracturing of the snow crystals leading to the
slight overprediction bias.

Figure 20. Calculated Snowfall for SVB SNOTEL using the redeveloped MCT
curves (or New MCT Table) versus the Observed Snowfall for 2015-2020.
r2=0.8743 (inset), Adj r2=0.8737, S=1.077, and p-value=1.2E-104 for the windy,
melting, and standard data. Red rectangle encompassing overperforming data
points.

Curiously, there are also a handful of conspicuous underestimated points (see
red rectangle Fig. 20) and what appears to be a fairly obvious outlier with a
reported 24-hour snowfall of 36 in (91.4 cm). Upon closer inspection of this
latter data point, it was confirmed to be at considerable odds with the reported
24-hour change in snow depth of 19.0 in (48.3 cm). As for the
underestimated points, some of which are more than double the calculated
value, we can only speculate that there may have likely been a significant



undercatch of water equivalent precipitation at the automated SVB gauge
and/or difficult snowfall measurement conditions at the manual observation
site due to wind. Also, as previously discussed, forced mesoscale terrain
and/or vertical temperature profile and lifting mechanisms may have played a
part in the enhanced snowfall conditions.

B. OLS Results
1. Pocatello Data Set

Once again, snow days from 2015 to 2020 where the maximum temperature
(Tmax) was 3.3oC (38oF) or less and the sum of the hourly wind observations
(Wtot) for the day fell below 89.8 m/s (201 mph) were utilized in conjunction
with the OLS snowfall equation to calculate a bulk daily snowfall accumulation
(Fig. 21). Here we see a modest and unbiased result with nearly 71% of the
variance (r2=0.7052) in the Observed Snowfall being accounted for by the
OLS snowfall with a standard error of 0.56 in (1.4 cm). The enumerated days
identified in figure 19 were similarly labeled in figure 21 for comparison
purposes. The OLS results are similar to the redeveloped MCT results but
with slightly larger spread resulting in a degraded goodness-of-fit value.

Figure 21. Calculated Snow from the OLS equation for Snow Days with Tmax <
3.3oC (38oF) at Pocatello (PIH) from 2015-2020. r2=0.7052 (inset), Adj
r2=0.7009, S=0.5580, and p-value=1.05E-19 for the daily observed snowfall
(SnowCTot). Starred values (*) represent the 6-hourly synoptic subtotals.



2. Sun Valley Data Set
Snow days from 2015 to 2020 where the maximum temperature was 3.3oC
(38oF) or less were utilized in conjunction with the OLS snowfall equation for
the Sun Valley site (Figure 22). Here we see a favorable correlation
(r2=0.8572) with a standard error of a little over 1.14 in (2.9 cm) and a slight
overprediction bias for the windy, melting, and standard data sets. As was
noted previously, the windy data set was added to the calculation to
compensate for the relatively small number of melting and standard cases
available at this normally windy site. By doing so, it is believed that the windy
data set likely introduced a significant portion of data that had undergone
destructive crystal alterations primarily due to fracturing which resulted in a
densification of the snowfall and hence a slight bias toward overprediction.
Once again, a similar number of underestimated windy cases were observed
along with one erroneous data point (36 in (91.4 cm) observed value).

Figure 22. Calculated Snowfall for SVB SNOTEL using the OLS equation versus
the Observed Snowfall for 2015-2020. r2=0.8572 (inset), Adj r2=0.8570,
S=1.148, and p-value=2.55E-98 for the Windy, Melting, and Standard data.

5. DISCUSSION AND CONCLUSIONS
In an effort to produce reasonably accurate, timely, and consistent snowfall estimates in
an operational setting, two distinct models were developed for use with automated
meteorological platforms – a redeveloped version of the widely discarded New Snowfall
to Estimated Meltwater Conversion Table (MCT) and a statistical model based on
Ordinary Least Squares (OLS) methods. Tests of these models on local independent



data sets (see Section 4) produced encouraging results with no bias as was previously
reported with the original MCT. Due to natural limitations associated with the Kühtai
data set, the use of the redeveloped MCT curves and OLS equation would be best
applied to snowfall events where temperature values ranged between -11.7 and 1.7oC
(11 and 35oF) and 24-hour water equivalent precipitation values fell below 25.4 mm (1.0
in). In an effort to overcome these limitations, future work might test whether “grafting”
additional data sets and/or extreme events from colder continental climate regimes onto
the Kühtai data set may help to extend the objective reach of the models. Areas with a
strong marine, topographical, and/or frequent organized deep frontogenetic influences
(e.g., Sierra or Cascade Mountain Ranges, and Midwest states) may find these results
unsuitable for operational use due to differences in climate, thermodynamic, and/or
dynamic forcing characteristics unique to those regions. Testing the equations on local
data sets may help to alleviate some of these concerns.

The methodology used to produce the redeveloped MCT curves was highly subjective,
labor intensive, prone to error and bias, and likely not easily reproducible. Spatial
interpolation techniques such as inverse distance weighting, cubic splines, Kriging,
and/or nearest neighbor (Hennemuth, B. 2013), among others, might help to improve
the results as well as alleviate many of the concerns over the subjective techniques
used to develop and extend the curves. These interpolation techniques would have to
be suitable for irregularly spaced and discontinuous data samples over 2- and
3-dimensional relational space to be of any use in this application.

A number of instances were highlighted where the observed snowfall varied
considerably from the estimated snowfall value. In most of these cases, the
corresponding observations proved very helpful in deconstructing the events and
exposing errors and inconsistencies rooted in observational practices, and limitations in
the modeling effort associated with the constrained data set used during development.
Additionally, questions remained as to the possible influence of mesoscale terrain
enhancements and/or vertical thermal profiles and lift to enhanced dendritic snow
growth and snowfall events. Ongoing work by several researchers in the Midwest
(Hultquist 2020; Baumgardt, Schmidt, and Just 2020) have focused on frontal
environments favorable for high snow-to-liquid water ratios, and further investigation
into this aspect of the current study would be of interest.

Tests of both models on an independent data set showed that the OLS results were
slightly weaker in both goodness-of-fit and standard error. One possible reason for this
result may have something to do with how well the temperature effects were captured
by the quadratic equation used during the development of the statistical model. In the
redevelopment of the MCT curves, a cubic spline was used to fit the data more closely
and thus, it may prove beneficial to explore the use of other functions to more
adequately capture the varying nonlinear temperature aspects of the data.
Additionally, it was found that the residuals were not normally distributed in the OLS
model which violated one of the optional assumptions and precluded the use of
significance levels and significance tests. Initially, it was thought that constraining the
data to include only the standard and melting categories may have been too stringent.
As was mentioned previously, grafting extreme events and/or colder continental data



sets onto the Kühtai data set in addition to relaxing the above constraints might prove
helpful in increasing the variability needed to normalize the residuals.

Both equations were developed using bulk water equivalent precipitation values
obtained over a 24-hour period, average temperature values obtained during the
associated precipitation event, and a single snowfall observation recorded at the end of
the fixed observing period. It is somewhat remarkable that the modeling results
performed as well as they did given the combined impacts that significantly varying
temperature and precipitation could have on snowfall production within the course of an
event. Here we provide a word of caution. Use of the equations to generate hourly or
even finer time-scale snowfall values that are then summed over multiple hours or even
days would likely produce exaggerated and unrealistic snowfall results as was
demonstrated in Section 4. An appropriate application of the models would involve the
use of a distinct 24-hour bulk rendering of the water equivalent precipitation and the
average of the associated temperature values observed while it was precipitating. In
retrospect, the use of a weighted temperature average based on the amount of water
equivalent precipitation recorded during each hour of the snowfall event might have
proven more useful in the development of the models and would have likely improved
the sensitivity to temperature-precipitation variations within the storm events. Another
method of improving sensitivity would involve the use of a database that contained
hourly snowfall and snow compaction measurements which, to the author’s knowledge,
does not exist.

Applying these equations to real-time automated data sets and displaying the results in
a graphical interface along with verifying manual snowfall reports would be a next
logical step in demonstrating the usefulness of the models in an operational setting.
That said, a fairly robust automated quality control process with manual overrides would
need to be implemented in order to handle or flag suspect and/or errant data. No viable
method would be available to “optimize” the data stream as was done in this study since
most automated platforms do not have redundant sensor packages. Finally, the
snowpack is constantly undergoing metamorphosis following any snowfall event due to
redistribution, compaction, melting, fragmentation, etc. (Trustman 2016, Dixon and Boon
2012, Pomeroy 1995). Additionally, the dynamic range of snow depth across spatial
gradients on the order of 1 to 10 m can vary significantly (Trustman 2016, Sturm et al.
2010). The estimates generated using the proposed models are in no way meant to
replace a well-seasoned observer, but would likely help to provide a reasonable
depiction of ongoing snowfall events while bolstering situational awareness in an
operational meteorological setting.
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