Continental Scale Heterogeneous Channel Routing Strategy for Operational Forecast Models

Ehab Meselhe, Eric D. White, and Md Nazmul A Beg Tulane University, River-Coastal Science & Engineering

James Halgren, Dong Ha Kim, Fred Ogden, Trey Flowers National Water Center

1,000 km

Tulane

500

2020 UNIFIED FORECAST SYSTEM USERS' WORKSHO

Acknowledgements

This research effort is performed in collaboration with the National Water Center and funded by the NOAA - Joint Technology Transfer Initiative (JJTI) under contract no. NA18OAR4590394.

National Water Model (NWM)

- Short (18 hr), Medium (10 day) and, and Long (30 day) range forecasts
- Atmospheric forcings from a variety of sensor and model datasets (e.g., UFS)
- Hydrologic surface and subsurface routing
- Hydraulic channel routing (WRF-Hydro) uses Muskingum-Cunge in NHDPlusV2 network

St. Venant Equations

• Conservation of Volume:

$$\frac{\partial Q}{\partial x} + \frac{\partial A}{\partial t} = 0$$

• Conservation of Momentum:

Dimensionless Scaling Parameters (DSP)

- Ferrick (1985) identified several parameters to estimate relative influence of dynamic vs diffusive & kinematic waves.
- Meselhe et al. (2020) revisited this approach to quantify need for dynamic wave routing in the NWM.
- The magnitude of each momentum term was also analyzed.

DSP	Equation	Physical interpretation
$C_{ m r}$	$C_{ m r}=v_0ig(rac{\Delta t}{\Delta x}ig)$	Courant number: Ratio of mean flow velocity to measured wave celerity
F_0	$F_0=rac{v_0}{\sqrt{gy_0}}$	Froude number: Ratio of surface wave to mean flow velocity
S	$S = rac{S_0}{S_0}$, 2	Ratio of channel bed slope to energy gradient
D_{I}	$D_{\mathrm{I}} = \left(rac{C_{\mathrm{r}}}{F_0} ight)^2$	Ratio of Courant to Froude numbers; or surface wave to measured wave celerity
F_{I}	$F_{\mathrm{I}}=rac{2C_{r}}{\left(C_{*} ight)^{2}}\left(rac{k\Delta x}{y_{0}} ight)$	Friction parameter: influence of friction effects on river flow
${F}_{ m c}$	$F_{ m c}=F_{ m I}C_{ m r}$	Friction parameter: reflecting influence of F_{I} and Courant number
D	$D=rac{D_{ extsf{I}}}{F_{ extsf{c}}}$	Dimensionless diffusion coefficient: ratio of wave diffusion to wave advection

Table (after Ferrick, 1985) from Meselhe et al. (2020)

Test cases from Meselhe et al. (2020)

Test cases from Meselhe et al. (2020)

Prevalence of Dynamic Waves

- Pressure gradient is non-negligible¹ in 97% of sampled points in test cases
 - Kinematic Wave only useful in 3% of cases
- Inertia terms are negligible² in 76% of sampled points in test cases
 - Dynamic Wave needed in 24% of cases

Tulane

- Therefore, Diffusive Wave appropriate in roughly 73% of cases
- Ferrick's F_C indicates inertia is negligible in 60%– 80% of sampled points in test cases

¹considered negligible when momentum term due to pressure is less than 10% of that due to friction ²considered negligible when momentum term due to inertia is less than 10% of that due to friction

Prevalence of Dynamic Waves

We want to know a priori whether we need to run the Dynamic Wave or can 'make do' with Diffusive Wave. But the inertia terms are only calculated via the full Dynamic Wave model; they are not available if Diffusive Wave, Muskingum-Cunge, or Kinematic wave routing algorithms are used. We must rely on the DSPs. **Diffusive Wave OK**

Dynamic Wave

0.4

[abs(l) + abs(ll)

Needed

For the ~ 25% of conditions that require Dynamic Wave routing:

- can we identify <u>where</u> these channel reaches are located within CONUS, and
- <u>when</u> conditions will allow for simplified routing algorithms to be used without loss of accuracy?

¹considered negligible when momentum term due to pressure is less than 10% of that due to friction ²considered negligible when momentum term due to inertia is less than 10% of that due to friction

Work Flow: Continental Scale Properties

National Hydrography Dataset - NHDPlusV2

- channel alignment
- channel slope

Network is reduced to channel reaches that have the two highest stream orders within each HUC04

Workflow: Continental Scale Properties

Estimate bankfull channel width from:

- contributing drainage area (Wilkerson et al., 2014)
- corresponds to '2-yr' peak flowrate, which is calculated via USGS StreamStats

Bankfull width chosen so that channel reach can be represented with a rectangular crosssection

- removes complexities of modeling floodplain connectivity
- no need for cutting cross-sections from DEMs

Tulane

 only using in order to flag need for Dynamic vs Diffusive wave algorithms, ultimately flood inundation will be modeled with the operational model/cross-sections

Test case: Clark Fork River, Montana

- '2-yr' Peak Discharge = 858 cms
- Basin area = $23,310 \text{ km}^2$
- Bankfull width = 45 m
- Mean channel slope = 0.0012
- Manning's roughness = 0.03
- Channel reach length = 165 km
- No backwater or drawdown

Test case: Clark Fork River, Montana

- '2-yr'Peak Discharge = 858 cms
- Basin area = 23,310 km²
- Bankfull width = 45 m
- Mean channel slope = 0.0012
- Manning's roughness = 0.03
- Channel reach length = 165 km
- No backwater or drawdown

Dynamic wave not required (F_c >> 10)

Kinematic wave would suffice (D << 0.1)

Next Steps for CONUS analysis:

- For mainstem reach within each HUC04 model:
 - more frequent flowrates than bankfull (e.g., 1-year flood and smaller)
 - bankfull flowrates with varying downstream boundaries

• varied hydrograph shapes and durations

Next Steps for CONUS analysis :

- Repeat above analysis with detailed slopes (as opposed to average slope per reach)
- Repeat above analyses with varying channel roughness values
- Analyze variations in increasing downstream water levels (e.g., tidal)
 - Important for tidal channels with large tidal ranges (but how large?)
 - Observed tidal amplitude and period will be used to set realistic/operational bounds
 More on this in following slides
 - Also likely to be important for accurate modeling in headwater networks with intense rainfall (e.g. flashy hydrographs in neighboring basins)

Additional test cases

- Analyze sensitivity of complex channel cross-sectional geometry
 - will be done for select basins with detail cross-sections available
 - Vermilion River, LA; Goodwin Creek, MS; more
- Compare simulations of Dynamic & Diffusive wave to assess accuracy and computational costs of different methods
 - More on this in following slides

Lower Mississippi River Model Domain

- U/S Boundary at Baton Rouge
 D/S boundary at Fast Jatty (So
- D/S boundary at East Jetty (South West Pass)
- River length 411.8 km

LMR Experiment: Model Performance

- Simplified cross section representations
- Simplified bed slope (only positive/downward slope)

	No of X-secs	Max Dx (m)	Min Dx (m)	Ave Dx (m)
Model Domain Attributes	280	2,184	796	1,423

	Dt	Simulation	Run Time	Courant	Run Time for NHD+/per
	(S)	Duration (yrs)	(S)	No (-)	hour(s)
Dynamic Wave	240	11	1,590	0.706	200
Diffusive Wave	Var	11	370	1.0	47
Muskingum Cunge	240	11	536		67

Channel Flow Routing: Scaling Parameters

- Friction Parameters $(F_c \& F_l) >> 1$
 - Bulk Waves
- Diffusion Coefficient (D) >1
 - Diffusive Wave

Discharge at Belle Chasse

Discharge Along the River Length

Tulane

Dynamic Wave
Diffusive Wave
Muskingum Cunge

Water Level at Baton Rouge

Dynamic/Diffusive Wave: 11-Year Validation

Black: Simulated data Red: Observed data

Vermilion River Experiment

- Primary stream for a HUC-8 in South Central Louisiana
- Upstream at river station 281,095
- Downstream at river station 90,452
- Data source: UL Lafayette (Dr. Habib)
- River reach length: 58.1 km
- Upstream Boundary: Q (time series)
- Downstream Boundary: WL (time series)

No of cross	Maximum dx	Minimum dx	Average dx
sections	(m)	(m)	(m)
373	457.2	42.2	156.2

Vermilion River: Tributaries and Lateral Flow

Connection Name	Distance from U/S (m)
Coulee Des Poches	14,340
Coulee Mine	16,760
Isaac Verot	28,790
lle des Cannes	30,300
Anslem	36,350
Valcourt	53,080
Kenny	55,980

Storage Area (Swamp): Bi-directional Flow (distance: 3,436-11,154 m from U/S)

Channel Flow Routing: Scaling Parameters

- Friction Parameters ($F_c \& F_l$) ~ 1: Dynamic Waves
- Friction Parameters ($F_c \& F_l$) >> 1: Bulk Waves
 - Diffusion Coefficient (D) >1: Diffusive Wave

WL comparison: Observation vs Simulated

Discharge comparison: Observation vs Simulated

Compound Trapezoidal Section

• Side slope: z

- Bottom width: Bw
- Top width at bankfull depth: Tw
- Width of floodplain: TwCC
- Bankfull depth: bfd=(Tw-Bw)/(2z)
- 7 different compound cross sections are used to approximate the geometry

Z	Bw	Tw	TwCC	Sections
2.5	5	40	150	1 – 50
3	10	53	280	51 - 100
3.5	10	75	300	101 – 150
3.8	15	85	260	151 – 200
3.8	12	75	305	201 – 250
3.8	12	70	300	251 – 300
3.6	12	70	290	301 - 373

Natural vs Approximated Sections

Channel Bed Slope Approximation

- Muskingum Cunge does not accept zero or adverse bed slope
- Bed slope approximated as shown below

Surrey

Hwy 733

Discharge and Water Level: Animation

https://wavetulanemy.sharepoint.com/:v:/g/per sonal/mbeg_tulane_edu/ERz qlgcaUaJCsi40RBPNC18BbY3 HA8wU2ON3o7n6rh9g6A?e= TN2oZM

Channel Flow Routing – D/S WL Variability

Findings

• Dynamic wave:

- Applicable to, but unnecessary and expensive to be used for, all hydraulic conditions
- Should be limited to transition zone or when flow acceleration is significant
- Code can be optimized with potential of substantial speedup

• Diffusive wave:

- Applicable to a broad set of conditions: no limits on bed slope (including adverse)
- Captures backwater effects quite well
- Provides a stable solution even when acceleration terms are significant but with oscillations
- Faster than Muskingum-Cunge despite being more rigorous

• Muskingum-Cunge:

- Compound cross section is limiting but can be improved (this will help stability and speed)
- Slope limitations are problematic
- Inability to capture downstream effects are also problematic

Questions?

References:

Ferrick, M.G. 1985. "Analysis of River Wave Types." Water Resources Research. 21 (2): 209–20.

Meselhe, E.A., et al., 2020. "Continental scale heterogeneous channel flow routing strategy for operational forecasting models." J. American Water Resources Assoc. 1-13. <u>https://doi.org/10.1111/1752-1688.12847</u>

Wilkerson, G.V., et al., 2014. "Continental-scale relationship between bankfull width and drainage area for single-thread alluvial channels." Water Resources Research. 50: 919-936. <u>https://doi.org/10.1002/2013WR013916</u>

