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National Water Model (NWM)
• Short (18 hr),  Medium (10 

day) and, and Long (30 
day) range forecasts

• Atmospheric forcings from 
a variety of sensor and 
model datasets (e.g., UFS)

• Hydrologic surface and 
subsurface routing

• Hydraulic channel routing 
(WRF-Hydro) uses 
Muskingum-Cunge in 
NHDPlusV2 network 

Figure from: https://water.noaa.gov/map

https://water.noaa.gov/map


St. Venant Equations
• Conservation of Volume:

• Conservation of Momentum:
Inertia Pressure Gravity Friction

Kinematic Wave
Muskingum-Cunge

Diffusive Wave
Dynamic Wave



Dimensionless Scaling Parameters (DSP)
• Ferrick (1985) identified 

several parameters to 
estimate relative influence 
of dynamic vs diffusive & 
kinematic waves.

• Meselhe et al. (2020) 
revisited this approach to 
quantify need for 
dynamic wave routing in 
the NWM.

• The magnitude of each 
momentum term was also 
analyzed. Table (after Ferrick, 1985) from Meselhe et al. (2020)



Test cases from Meselhe et al. (2020)
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Prevalence of Dynamic Waves
• Pressure gradient is non-negligible1 in 97% of 

sampled points in test cases 
• Kinematic Wave only useful in 3% of cases

• Inertia terms are negligible2 in 76% of sampled 
points in test cases

• Dynamic Wave needed in 24% of cases
• Therefore, Diffusive Wave appropriate in roughly 73% 

of cases

• Ferrick’s FC indicates inertia is negligible in 60%–
80% of sampled points in test cases
1considered negligible when momentum term due to pressure is less than 10% of that due to friction
2considered negligible when momentum term due to inertia is less than 10% of that due to friction

Diffusive Wave OK

Dynamic Wave 
Needed

Figures from Meselhe et al. (2020)



Prevalence of Dynamic Waves
• Pressure gradient is non-negligible1 in 97% of 

sampled points in test cases 
• Kinematic Wave only useful in 3% of cases

• Inertia terms are negligible2 in 76% of sampled 
points in test cases

• Dynamic Wave needed in 24% of cases
• Therefore, Diffusive Wave appropriate in roughly 73% 

of cases

• Ferrick’s FC indicates inertia is negligible in 60%–
80% of sampled points in test cases
1considered negligible when momentum term due to pressure is less than 10% of that due to friction
2considered negligible when momentum term due to inertia is less than 10% of that due to friction

Diffusive Wave OK

Dynamic Wave 
Needed

Figures from Meselhe et al. (2020)

We want to know a priori whether we need to run the Dynamic Wave 
or can ‘make do’ with Diffusive Wave. But the inertia terms are only 
calculated via the full Dynamic Wave model; they are not available if 
Diffusive Wave, Muskingum-Cunge, or Kinematic wave routing 
algorithms are used. We must rely on the DSPs.

For the ~ 25% of conditions that require Dynamic Wave routing: 
● can we identify where these channel reaches are located within 

CONUS, and 
● when conditions will allow for simplified routing algorithms to be 

used without loss of accuracy?



Work Flow: Continental Scale Properties
National Hydrography 
Dataset - NHDPlusV2

• channel alignment
• channel slope

Network is reduced to 
channel reaches that 
have the two highest 
stream orders within 
each HUC04



Workflow: Continental Scale Properties

Estimate bankfull channel width from:
• contributing drainage area (Wilkerson et al., 2014) 
• corresponds to ‘2-yr’ peak flowrate, which is 

calculated via USGS StreamStats

Bankfull width chosen so that channel reach 
can be represented with a rectangular cross-
section

• removes complexities of modeling floodplain 
connectivity

• no need for cutting cross-sections from DEMs
• only using in order to flag need for Dynamic vs 

Diffusive wave algorithms, ultimately flood 
inundation will be modeled with the operational 
model/cross-sections

Figure from Wilkerson et al. (2014)



Test case: Clark Fork River, Montana
• ‘2-yr’ Peak Discharge = 858 cms
• Basin area = 23,310 km2

• Bankfull width = 45 m
• Mean channel slope = 0.0012
• Manning’s roughness = 0.03
• Channel reach length = 165 km
• No backwater or drawdown



Test case: Clark Fork River,  Montana
• ‘2-yr’Peak Discharge = 858 cms
• Basin area = 23,310 km2

• Bankfull width = 45 m
• Mean channel slope = 0.0012
• Manning’s roughness = 0.03
• Channel reach length = 165 km
• No backwater or drawdown

Dynamic wave not required (FC >> 10)

Kinematic wave would suffice (D << 0.1)

24 hrs



Next Steps for CONUS analysis:
• For mainstem reach within each HUC04 model:

• more frequent flowrates than bankfull (e.g., 1-year flood and smaller)
• bankfull flowrates with varying downstream boundaries

• varied hydrograph shapes and durations



Next Steps for CONUS analysis :
• Repeat above analysis with detailed slopes (as opposed to 

average slope per reach)

• Repeat above analyses with varying channel roughness values

• Analyze variations in increasing downstream water levels (e.g., tidal)
• Important for tidal channels with large tidal ranges (but how large?)
• Observed tidal amplitude and period will be used to set realistic/operational bounds

• More on this in following slides
• Also likely to be important for accurate modeling in headwater networks with intense 

rainfall (e.g. flashy hydrographs in neighboring basins)



Additional test cases

• Analyze sensitivity of complex channel cross-sectional geometry
• will be done for select basins with detail cross-sections available

• Vermilion River, LA; Goodwin Creek, MS; more

• Compare simulations of Dynamic & Diffusive wave to assess accuracy 
and computational costs of different methods

• More on this in following slides



Baton 
Rouge

Bohemia
Baptiste 
Collette

Cubit’s Gap
Tiger Pass & Grand Pass

West Bay

Ft. St. 
Philip

Lower 
Mississippi 
River Model 
Domain

• U/S Boundary at Baton Rouge
• D/S boundary at East Jetty (South West 

Pass)
• River length 411.8 km



LMR Experiment: Model Performance

• Simplified cross section representations
• Simplified bed slope (only positive/downward slope)

No of X-secs Max Dx (m) Min Dx (m) Ave Dx (m)

Model Domain Attributes 280 2,184 796 1,423

Dt 
(s) 

Simulation 
Duration (yrs)

Run Time 
(s)

Courant 
No (-)

Run Time for NHD+/per 
hour(s)

Dynamic Wave 240 11 1,590 0.706 200
Diffusive Wave Var 11 370 1.0 47
Muskingum Cunge 240 11 536 -- 67



Channel Flow Routing: Scaling Parameters

• Friction Parameters (Fc & FI) >> 1
• Bulk Waves 

• Diffusion Coefficient (D) >1
• Diffusive Wave



Discharge at Belle Chasse
Dynamic Wave
Diffusive Wave
Muskingum Cunge
Observed Q



Discharge Along the River Length 

Dynamic Wave
Diffusive Wave
Muskingum Cunge



Water Level at Baton Rouge



Dynamic/Diffusive Wave: 11-Year Validation
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Storage/SwampSurrey station 

HWY733 station 

Coulee Le des 
Cannes

Perry station 

Coulee Mine

Vermilion River Experiment 
• Primary stream for a HUC-8 in South Central 

Louisiana
• Upstream at river station 281,095
• Downstream at river station 90,452
• Data source: UL Lafayette (Dr. Habib)
• River reach length: 58.1 km
• Upstream Boundary: Q (time series)
• Downstream Boundary: WL (time series)

No of cross 
sections

Maximum dx 
(m)

Minimum dx 
(m)

Average dx 
(m)

373 457.2 42.2 156.2



Vermilion River: Tributaries and Lateral Flow

Connection Name Distance from U/S (m)
Coulee Des Poches 14,340
Coulee Mine 16,760
Isaac Verot 28,790
Ile des Cannes 30,300
Anslem 36,350
Valcourt 53,080
Kenny 55,980



Storage Area (Swamp): Bi-directional Flow 
(distance: 3,436-11,154 m from U/S)

Negative Flow: Flow from River to Storage

Positive Flow: Flow from Storage to River



Channel Flow Routing: Scaling Parameters

Dynamic Routing Needed
Diffusive Routing Sufficient

• Friction Parameters (Fc & FI) ~ 1: Dynamic Waves
• Friction Parameters (Fc & FI) >> 1: Bulk Waves

• Diffusion Coefficient (D) >1: Diffusive Wave



WL comparison: Observation vs Simulated
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Discharge comparison: Observation vs Simulated

Storage/SwampSurrey station 

HWY733 station 
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Compound Trapezoidal Section

• Side slope: z
• Bottom width: Bw 
• Top width at bankfull depth: Tw
• Width of floodplain: TwCC
• Bankfull depth: bfd=(Tw-Bw)/(2z)
• 7 different compound cross sections are used 

to approximate the geometry 

Bw

Tw

TwCC

z

1bfd

z Bw Tw TwCC Sections
2.5 5 40 150 1 – 50

3 10 53 280 51 - 100
3.5 10 75 300 101 – 150
3.8 15 85 260 151 – 200
3.8 12 75 305 201 – 250
3.8 12 70 300 251 – 300
3.6 12 70 290 301 - 373



Natural vs Approximated Sections

Natural sections
Averaged value
Trapezoidal section



Channel Bed Slope Approximation

• Muskingum Cunge does not accept zero or adverse bed slope
• Bed slope approximated as shown below



Surrey
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Hwy 733
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Discharge and Water Level: Animation

https://wavetulane-
my.sharepoint.com/:v:/g/per
sonal/mbeg_tulane_edu/ERz
qlgcaUaJCsi40RBPNC18BbY3
HA8wU2ON3o7n6rh9g6A?e=

TN2oZM



Channel Flow Routing – D/S WL Variability








Findings
• Dynamic wave: 

• Applicable to, but unnecessary and expensive to be used for, all hydraulic conditions
• Should be limited to transition zone or when flow acceleration is significant
• Code can be optimized with potential of substantial speedup

• Diffusive wave:
• Applicable to a broad set of conditions: no limits on bed slope (including adverse)
• Captures backwater effects quite well 
• Provides a stable solution even when acceleration terms are significant but with 

oscillations
• Faster than Muskingum-Cunge despite being more rigorous

• Muskingum-Cunge: 
• Compound cross section is limiting but can be improved (this will help stability and 

speed)
• Slope limitations are problematic 
• Inability to capture downstream effects are also problematic



Thank you.

Questions?
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