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Introduction Key Points Surface Albedo and Snow Depth
While the role of precipitation has been recognized as a major factor in water balance from a hydrology perspective, o P initati . t G tL " . d ¢ ¢ i o Mf\'\\w Superior (43 & Timeseries of snow depth on the ice [cm] (blue) and ice surface
precipitation impacts on ice and water temperature across Earth’s large lakes are relatively undocumented. In mid- recipitation impacts on @reat Lakes ice cover and water temperature were o[ M e loo  albedo [%] (red) for each of the Great Lakes for the winters of 2014-
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snow accumulation on lake ice, which is a manifestation of winter precipitation, has two opposing effects on lake ice, St Huron 460 (precipitation) . o p P-
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i.e. the increase of surface albedo resulting in delay in ice melting, and the heat insulation resulting in slowed growth ' ® The model results showed that snow cover on the ice reduced the net 1 ﬁ’/wkwf M : | precip
of ice. Second, the air-lake heat transfer associated with precipitation can be significant. This heat transfer can be d : £i d : hick hich ited i light] I S0 Apr May ~ Jan Feb Mar Apr May . 8
divided into two components, i.e. the sensible and latent components. The sensible heat flux from precipitation pro uction ot ice and mean Ice thickness, which resulted In s 18 t y €arlier @ of egan oo &
occurs due to the temperature difference between rain droplets/snow flakes and the lake surface. In the North decay Of ice cover. 5 i ig o
American Great Lakes (hereafter Great Lakes), the large atmosphere-lake temperature difference (>10 °C) during fall 5 oL i Fem T "F;b”;;} TRy 0 &
and winter, and, as well as massive snowstorms over the lakes may cause significant sensible and latent heat fluxdue  ® The latent heat flux from snow me|ting cooled the water surface 5||ght|y while 5 T _ = , , o
@ ¢ Erie 160 J Spatial patterns of snow depth on the ice [cm] from the precipitation
to precipitation. There is a growing momentum in the coastal modelmg community for coupling i ice, hydrodynamlcs . . . o 140 ment Expt. 2 (a,e) Ibedo di %] bet Evot 1
2nd hvdrologic brocesses. Examinine orecioitation imoacts on the - | the sensible heat flux from rain/snow barely impacted the water surface il v | experiment Expt. 2 (a,e), surface albedo difference [%] between Expt.
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Great Lake ice B e | ¥ v o ' tem peratu re. . _ (c,g), and thickness difference Dh [cm] between the control (Expt. 1) and
and water of Ontario {60 precipitation (Expt. 2) experiments (d,h). First row (a,b,c,d) shows the
temperature cET of m N 120 results on March 5, 2015 and the second row (e,f,g,h) shows the results
would be a b ints Ice Extent and Volume ""Jan Feb Mar Apr May Jan Feb Mar Apr May . on March 5, 2016. The results from Expt. 3 are not included, as they are
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ContribUtion to ’Exp.12016—?}1—15a‘ y ,; b é The Spatla/ patterns Of ice ‘;S‘Rdwpd'?:th_‘ “ 4 N - ice thmitkng.ss‘h;
ensurin __ oyt concentration [%] and water o ol ") 2 e
& " surface temperature [°C] on o aVE Sl
?Ccurat? January 15 (a,b,c,d), February 15
Interactions at (e,f,g,h), and March 15 (i j k,|).
the lake surface 5 e AN The model results from Exp. 1
in coupled G (control) are shown for 2015
W e s o <, :
model e e _ R i - (a,e,i) and 2016 (c,g,k) and the
app||cat|ons ; ¢ « 5 ; = Location Of the Lauren'ﬂ;a}[],Great LakeS -GLSE’HN'C 2015'5?.':: ’ .,. [l observational ana/yses from the
' MODIS Imagery of Great Lakes ice conditions Cited from Google Earth g ! A ¢ s oodhe National Ice Center (NIC) and the
H T T, T 4 - Faaov
3 B Great Lakes Surface
] Environmental Analysis (GLSEA)
CO u p I ed ICe-Hyd rOdyn a.m I C MOd eI are Shownfor2015 (blf;j) and 0 1 2 é 21 5 6 7 8 9 10 -30-24-18-12 -6 0 6 12 18 24 30 (‘) 8 16 24 32 40 48 56 64 -30-24-18-12 -6 0 ©6 12 18 24 30
snow depth on the ice [cm] albedo difference [%] ice thickness [cm] thickness difference [cm]
2016 (d,h,l).
FVCOM (the unstructured grid, Finite Volume Community Precipitation Heat Fluxes H,, and H,
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EXptf 1 In. Expt. 2, both water temperature and.th.e other heat flux components were allowed to respond to the A Timeseries of ice coverage [%] for each of the Great Expt. 1 and Expt. 2 5 _— It was found that snow cover increased the reflection of solar radiation, but at the same time, prevented lake ice
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Ice Center (NIC). Red and blue lines are the model results not included, as they 0 e surface temperature because snowflakes absorbed heat when it touched the water surface to melt. On the
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other hand, warmer rain barely changed the water surface temperature during summer. While more process-

tively. Th It Expt. 3 t included, : : T : :
Governing equations Primitive equations ;ZZie;révieyar/yfdf::;c;/];rg'zzojfm Eg;ig) neided, @s oriented observations are needed for over-lake precipitation, snow cover, albedo, and ice thickness to reduce
: : model uncertainties, this study presented that winter precipitation is an important factor in the winter energy
Resolution 100 m-2.5 km (hor'-zontal)' Overlake Precipitation Evaluation budget over ice and water in the Great Lakes.
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