Coupled hydrological-hydrodynamic large-scale simulation

Wei Huang, Y. Joseph Zhang, Fei Ye, Haocheng Yu, Karinna Nunez Virginia Institute of Marine Science

Saeed Moghimi, and Edward Myers

NOAA National Ocean Service

- SCHISM 3D modeling system
- Model setup for Hurricane Irene: coupling to NWM
- Grid generation
- Challenges and success: bathymetry, bathymetry, bathymetry....
- Summary

*Publications:

- 1. Zhang et al. (in press) Simulating compound flooding events in a hurricane, Ocean Dynamics.
- 2. Ye et al. (2020) Simulating storm surge and compound flooding events with a creek-to-ocean model: importance of baroclinic effects, Ocean Modelling, 145.

SCHISM: <u>Semi-implicit</u> <u>Cross-scale</u> <u>Hydroscience</u> <u>Integrated</u> <u>System</u> <u>Model</u>

- Solves 3D Navier-Stokes equations in hydrostatic form with Boussinesq approximation
- Galerkin finite-element and finite-volume approach: generic unstructured grids
- Semi-implicit time stepping: no mode splitting \rightarrow large time step and no splitting errors
- Eulerian-Lagrangian method (ELM) for momentum advection \rightarrow efficiency & robustness

- Mixed grids (tri-quads)
- Flexible LSC² vertical grid
- Higher-order, monotone transport: TVD²; WENO3;
- Higher-order momentum advection (ELM with ELAD)
- ESMF ready

SCHISM offers the capability of multiscale physics/biology and the following technological advantages:

- Unsmoothed bathymetry
- Polymorphism
- Resolution on demand (skew elements)
- Robust seamless creek-toocean, Summit-to-Sea capability

... the goal is to minimize grid nesting as much as possible

Polymorphism

Model setup: seamless creek-to-ocean

- Non-smoothed bathymetry
- Explicitly representing NWM segments in the horizontal grid
- Grid resolution: 2~7 km in the ocean; 50-200 m in the main channels; down to
 <20m in small streams
- Terrain following vertical grid with varying number of layers (LSC²): 19 on average
- 3rd order transport scheme based on WENO
- Ocean boundary forced by HYCOM
- Initialized from HYCOM (with approximated salinity/temperature field inside the estuaries)
- Atmospheric forcing from ECWMF (ERA & ERA-HiRes)
- Freshwater inflow inside Delaware Bay from NWM
- Simulation period: 2011-7-27 ~ 2011-9-10 (50 days)
- Time step: 150 seconds

Two major configurations

- 1. Delaware Bay (3D baroclinic): 759K nodes and 1,478K elements. 80x Real Time on 1440 cores of Pleiades (NASA) (cf. Saeed's talk).
- 2. East coast + Gulf of Mexico: 2.2 mil nodes
 - The 2D model runs approximately 300 times faster than real time and can be efficiently conducted using as few as 500 cores
 - Working on 3D model

Coupling with NWM

- One-way coupling at the moment, from NWM to SCHISM
- The intersection points between NWM Segments and the SCHISM land boundary are determined.
- NWM flows are directly injected at the intersection points; SCHISM handles routing inside its own domain

Grid Generation

- DEM preparation: >300 tiles
- Major steps with SMS
 - Resolve all major channels
 - Patches are great way to resolve channels
- NWM segments are explicitly incorporated
 - Use GIS tools to clean up first
 - Robustness of the model greatly helps: did not bother to clean up skew elements
- Highly flexible to incorporate any small features: important for model skill locally

Model results: Harmonic analysis

Model results: water elevation for stations of east coast

Model results: water elevation for stations of Northern Gulf of Mexico

Challenges & issues

Low-resolution DEM

Station is located in a parking lot

Mismatch between the hires DEM and imagery/station location

Solution: move the station towards approximate location when post-processing

Solution: no solution

Solution: no solution

Success: importance of resolving bathymetry

Channels are resolved to allow water transport to upstream

Success: importance of resolving bathymetry

Summary

- During Hurricane Irene (2011), both storm and river induced surges are important
 - The first surge is mostly from ocean but at stations away from the coast, compound flooding from rivers is also important
 - Second and later surges are mostly due to river flooding; this is especially obvious at upstream stations
 - Inflow from National Water Model is reasonably accurate for predicting compound surges
 - Baroclinic adjustment is significant after the storm surge due to Gulf Stream adjustment
 - The direct precipitation is important
- We are applying the same technology to a 3D model for east coast + Gulf of Mexico
 - SCHISM's robust seamless capability enabled by polymorphism makes it efficient
 - 2D results show good model skills, provided that DEMs are accurate
 - It's important to resolve local features to capture the nonlinear transformation of tides
 - Future work: baroclinic model; other hurricane events