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SCHISM 3D modeling system

* Model setup for Hurricane Irene: coupling to NWM
* Grid generation
* Challenges and success: bathymetry, bathymetry, bathymetry....

* Summary

*Publications:

1. Zhang et al. (in press) Simulating compound flooding events in a hurricane, Ocean Dynamics.

2. Yeetal. (2020) Simulating storm surge and compound flooding events with a creek-to-ocean model: importance of
baroclinic effects, Ocean Modelling, 145.
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SCHISM: Semi-implicit Cross-scale Hydroscience Integrated System Model

Solves 3D Navier-Stokes equations in hydrostatic form with Boussinesq approximation

Galerkin finite-element and finite-volume approach: generic unstructured grids

Semi-implicit time stepping: no mode splitting = large time step and no splitting errors

Eulerian-Lagrangian method (ELM) for momentum advection = efficiency & robustness

SCHISM Modeling System
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© Mixed grids (tri-quads)
© Flexible LSC? vertical grid

© Higher-order, monotone transport: TVD?;
WENO3;

© Higher-order momentum advection (ELM
with ELAD)

© ESMF ready

SCHISM offers the capability of multi-
scale physics/biology and
the following technological advantages:

+ Unsmoothed bathymetry

¢+ Polymorphism

* Resolution on demand (skew
elements)

*  Robust seamless creek-to-
ocean, Summit-to-Sea
capability

... the goal is to minimize grid nesting as much as
possible



Polymorphism
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A single grid mimics
1D/2DV/2DH/3D cells
Efficiency and flexibility
Shaved cells for bottom
controlled processes
As a result, the
underlying bathymetry
can be accurately
represented, including
steep slopes

Zhang et al. (2015)



Model setup: seamless creek-to-ocean

* Non-smoothed bathymetry

* Explicitly representing NWM segments in the horizontal grid

* Grid resolution: 2~7 km in the ocean; 50-200 m in the main channels; down to
<20m in small streams

* Terrain following vertical grid with varying number of layers (LSC?): 19 on average

» 39 order transport scheme based on WENO

* Ocean boundary forced by HYCOM

* Initialized from HYCOM (with approximated salinity/temperature field inside the
estuaries)

* Atmospheric forcing from ECWMF (ERA & ERA-HiRes)

* Freshwater inflow inside Delaware Bay from NWM

 Simulation period: 201 1-7-27 ~ 201 1-9-10 (50 days)

* Time step: 150 seconds
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Two major configurations

I. Delaware Bay (3D baroclinic): 759K nodes and 1,478K elements. 80x Real Time on 1440 cores of Pleiades (NASA) (cf. Saeed’s talk).
2. East coast + Gulf of Mexico: 2.2 mil nodes

* The 2D model runs approximately 300 times faster than real time and can be efficiently conducted using as few as 500 cores
*  Working on 3D model



Coupling with NWM

One-way coupling at the moment, from NWM to SCHISM

The intersection points between NWM Segments and the SCHISM land boundary are determined.
NWM flows are directly injected at the intersection points; SCHISM handles routing inside its own domain
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Grid Generation

(@ SMS 13.0.10 (64-bit) - [NWM_grid_vd.sms] - o X

& File Edit Display Dasts Mapping Window Help -5

ni=1=E=) | Lemlb Uz RRe

adEEFIY_ B
|

 DEM preparation: >300 tiles
* Major steps with SMS
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* Resolve all major channels =

* Patches are great way to resolve channels B-.

* NWM segments are explicitly incorporated g3
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* Highly flexible to incorporate any small features: important for ofe s ;
model skill locally
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Model results: Harmonic analysis

| LN )/ i 2D barotropic simulation during Hurricane Irene
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e B * Model skill at most stations are
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Model results: water elevation for stations of east coast
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Model results: water elevation for stations of Northern Gulf of Mexico
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Challenges & issues

. _ Mismatch between the hi-
Low-resolution DEM Station is located in a res DEM and

parking lot imagery/station location

~“CRM, contours with“é@nﬁ'res:: %

Solution: move the station towards Solution: no solution
approximate location when post- —
processing
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NOAA station 8656483 at Beaufort
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Success: importance of resolving bathymetry
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Success: importance of resolving bathymetry

NOAA station 8449130

Arcs above Om resolving
at Nantucket Island, MA

the dry area.

Arcs below Om resolving
the wet area.
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. During Hurricane Irene (2011), both storm and river induced surges are important
. The first surge is mostly from ocean but at stations away from the coast, compound
flooding from rivers is also important

. Second and later surges are mostly due to river flooding; this is especially obvious at
upstream stations

. Inflow from National Water Model is reasonably accurate for predicting compound
surges

. Baroclinic adjustment is significant after the storm surge due to Gulf Stream adjustment
. The direct precipitation is important
. We are applying the same technology to a 3D model for east coast + Gulf of Mexico
. SCHISM'’s robust seamless capability enabled by polymorphism makes it efficient
. 2D results show good model skills, provided that DEMs are accurate

. It’s important to resolve local features to capture the nonlinear transformation of tides
. Future work: baroclinic model; other hurricane events






