A flexible infrastructure for coastal ocean and inland hydrology models coupling (P 1/2)

Saeed Moghimi^{1,2}, Edward Myers¹, Jaime Calzada^{1,2}, Sergey Vinogradov¹, Yuji Funakoshi¹, Lei Shi¹ ¹ NOAA National Ocean Service, Office of Coast Survey ² University Corporation for Atmospheric Research

Beheen Trimble³, Ali Abdolali³, Roham Bakhtyar³, Andre Van der Westhuysen³, Kazungu Maitaria³, Panagiotis Velissariou³ ³ NOAA National Weather Service

Unified Forecast System (UFS)

National Unified Operational Prediction Capability (NUOPC) Layer ESMF/NUOPC enabled models (Selected)

CST	Coastal ocean	ADCRIC, ROMS, FVCOM, SELFE/SCHISM
ATM	atmosphere	FV3 (Finite-Volume Cubed-Sphere Dynamical Core),
OCN	ocean	MOM5 and MOM6 (Modular Ocean Model)
WAV	wave	WWIII (WAVEWATCH III)
ICE	sea ice	CICE (Los Alamos Sea Ice Model)
HYD	hydrology	WRF-Hydro (Weather Research and Forecast Model Hydrology), NWM
LND	land	LIS (Land Information System)
	V	alidating In development Plan to develop

COASTAL Act application

NOAA's Environmental Modeling System (NEMS)

0.0

-0.2 E N -0.4

-0.6

-0.8

0.30

[E] 0.20 [E] 0.15 H 0.10

0.05

0.00

0.760

<u></u> **0**.755</u>

≣ 0.745

Ξ

ē 0.750 Wat

(a)

(b)

obs (1a)

el

Boer, 1996 wave flume

• • obs (1a)

15

X [m]

20

test case

Wave height

model

Set-up

0.30

0.25

0.20¹ ق 0

5 H 0.10

0.05

0.00

0.760

0.750 Water

0.745

Ξ <u>च</u> 0.755

NOAA Office of Coast Survey Moghimi et al, 2019;

Moghimi et al, in review

All model configurations and results are pre-decisional and for official use only

NWM/hydrology channel structure

NOAA Office of Coast Survey

Cosgrove et al, 2018

Compound inland-coastal flooding: a 3D creek-to-ocean approach (P 2/2)

Saeed Moghimi^{1,2}, Edward Myers¹, Zizang Yang¹, Jaime Calzada^{1,2} ¹ NOAA National Ocean Service ² University Corporation for Atmospheric Research

Joseph Zhang³, Wei Huang³, Fei Ye³ ³ Virginia Institute of Marine Science

Open source @ <u>https://github.com/schism-dev/</u>

SCHISM model domain

Irene, 2011 case: 2011-7-27 ~ 2011-9-10 (5)

2011-7-27 ~ 2011-9-10 (50 days)

- Time step: 150 seconds
- 20 m to 7 km
- Baseline (3D baroclinic): 80x Real Time on 1440 cores of Pleiades (NASA)
- The 2D model runs approximately 57 times faster than the baseline and can be efficiently conducted using as few as 40 cores.

Use a large domain for storm surge
Resolve Gulf Stream to get baroclinic response right during storms
NOAA Office of Coast Survey

- Coupled with National Water Model (NWM) at 10 m above MSL
- Seamless creek-to-ocean capability

Computational domain development

- Combine NWM shapefiles and the grid boundary
- Add main shipping channel
- Use a large domain for storm surge

Horizontal mesh

 Resolve Gulf Stream to get baroclinic response right during storms

(a) (b) SMS map in the Delaware Bay NWM segments incorporated

4ll model configurations and results are pre-decisional and for official use only

Exploring Creek-to-Ocean 3D modeling: SCHISM and NWM coupling

1) Ye et al, 2020; Ocean Modelling; 2) Zhang et al, 2020; Ocean Dynamics

Comparison of SST ten days after Irene (2011-09-07)

Simulating storm surge and compound flooding events with a creek-to-ocean model: **Importance of baroclinic effects**; F Ye, YJ Zhang, H Yu, W Sun, S Moghimi, E Myers, K Nunez, R Zhang, ..., 2020, **Ocean Modelling** 145, 101526; DOI: <u>https://doi.org/10.1016/j.ocemod.2019.101526</u>

Total Water Level: Wave contribution

- Elevations are generally well simulated
- Larger errors upstream possibly due to uncertainties in DEM and datum

All model configurations and results are pre-decisional and for official use only

Ye et al. (Ocean Modelling 2020)

SCHISM and NWM coupling: Irene, 2011

Zhang, Ye, H.C. Yu, W. Sun, Saeed Moghimi, Ed Myers, K. Nunez, R. Zhang, H. Wang, A. Roland, K Martin, X. Bertin, J. Du, Z. Liu, In press, *Simulating compound flooding events in a hurricane*, *Ocean Dynamics*.

NOAA Office of Coast Survey

Explore the results here: <u>www.tinyurl.com/schism-irene</u>

officia

pre-decisional

model configurations

SCHISM and NWM coupling: Irene, 2011 Philadelphia Airport, NJ

Water Level above the ground (inundation)

Extra inundation due to NWM stream flow and precipitation

NOAA Office of Coast Survey

Explore the results here: <u>www.tinyurl.com/schism-irene</u>

SCHISM and NWM coupling: Irene, 2011

Trenton, NJ

Water Level above the ground (inundation)

Extra inundation due to NWM stream flow and precipitation

NOAA Office of Coast Survey

Explore the results here: <u>www.tinyurl.com/schism-irene</u>

Future works

ADCIRC

- Adaptive data driven mesh generation
- Testing strategies for freshwater variables
- Updating ADCIRC NUOPC/ESMF interface

ROMS

- Testing NUOPC/ESMF model interface in NOAA NEMS environment
- Implementation of flexible freshwater source terms
- Considering open-channel type bottom roughness for rivers

FVCOM

- Developing NUOPC/ESMF model interface in NOAA NEMS environment
- Testing flexible freshwater source terms for seamless NWM and FVCOM coupling

SCHISM

 SCHISM capabilities to investigate 3D NWM-Coastal coupling for selected region will be extended to the whole US Atlantic coastal area.

IMPACT FACTOR 1.732

an Open Access Journal by MDPI

Extreme Events in Nearshore and River Integrated Region

Guest Editor Dr. Saeed Moghimi

Deadline 01 June 2020

mdpi.com/si/15174

References:

- Simulating storm surge and compound flooding events with a creek-to-ocean model: Importance of baroclinic effects; F Ye, YJ Zhang, H Yu, W Sun, S Moghimi, E Myers, K Nunez, R Zhang, ..., 2020, Ocean Modelling 145, 101526; DOI: <u>https://doi.org/10.1016/j.ocemod.2019.101526</u>
- Moghimi, S., Vinogradov, S., Myers, E.P., Funakoshi, Y., Van der Westhuysen, A.J., Abdolali, A., Ma, Z., Liu, F., et al., 2019. Development of a Flexible Coupling Interface for ADCIRC Model for Coastal Inundation Studies. Technical Report. NOAA National Ocean Service. DOI: <u>https://doi.org/10.25923/akzc-kc14</u>
- Moghimi, S.; Özkan-Haller, HT; Akan, C; Jurisa, JT; Mechanistic analysis of the wave-current interaction in the plume region of a partially mixed tidal inlets, 2019, Ocean Modelling 134, 110-126; DOI: <u>https://doi.org/10.1016/j.ocemod.2018.12.003</u>
- Zhang, Ye, H.C. Yu, W. Sun, Saeed Moghimi, Ed Myers, K. Nunez, R. Zhang, H. Wang, A. Roland, K Martin, X. Bertin, J. Du, Z. Liu, in press, Simulating compound flooding events in a hurricane, Ocean Dynamics.

