Validation of Significant Weather Features and Processes in Operational Models Using a Cyclone Relative Approach

Brian A. Colle¹ and Edmund Chang¹

and

Tara L. Jensen^{2,3}, John Halley Gotway^{2,3}, Paul Kucera², Julie Prestopnik^{2,3}, Minna Win^{2,3}, Barb Brown^{2,3}

¹Stony Brook University, Stony Brook, New York, USA ²NCAR/Research Applications Laboratory, Boulder, Colorado, USA ³Developmental Testbed Center, Boulder, Colorado, USA

Stony Brook University School of Marine and Atmospheric Sciences

Project Goals

- Cyclone tracking, matching, and verification. Compare GEFS, CMC, and EC ensembles for days 0-6.
- Use cyclone relative approach to investigate some of the relevant processes associated with various cyclone biases (moisture, precipitation, surface fluxes, stability, etc...).
- Develop feature-relative verification and diagnostic software within NCAR MET (Model Evaluation Tools).
- Port the feature-relative software in MET to our Operational Center partners and iterate on parameters relevant to operations and Testbeds (e.g., WPC Winter Weather Experiment).

Korfe and Colle (In revision WAF): Percent Best (1st) as well as Percent 2nd-5th rank for Cyclone Intensity and Along-Track for Days 4-6 for mean of EC, NCEP, CMC, NCEP+CMC, and ALL

Percent of Cases for Observed Cyclone Outside of Full Ensemble Envelope (hour 120)

Cyclone Relative Approach – (925 hPa Temp Gradient.. GFS Over vs Under-deepened > 1 stnd dev Cases (hour *120*)

CONTOUR FROM 6 TO 30 BY 2

Overdeepened Cases

Underdeepened Cases

925hPa TG error for (+)89 cases h54-72(K/10^3km)

925hPa TG error for (+)166 cases h78-96(K/10^3km)

925hPa TG error for (-)167 cases h102-120(K/10^3km) 925hPa TG error for (+)179 cases h102-120(K/10^3km)

Hour 54-72

Hour 78-96

60N

50N

40N

30N

Hour 102-120

Cyclone Relative Approach – (Precipitation Error using GPCP versus GFS Over vs Under-deepened > 1 stnd dev

g

cases

Overdeepened Cases

Total precipitation for (-)167 cases day 5 (mm/day)

Underdeepened Cases

Total precipitation for (+)166 cases day 4 (mm/day)

Total precipitation for (+)179 cases day 5 (mm/day)

Hour 54-72

Hour 78-96

Hour 102-120

A verification toolkit designed for flexible yet systematic evaluation (supported to the community via the DTC)

- Originally developed to replicate the EMC mesoscale verification system
- Over 70 traditional statistics using both point and gridded datasets
- Multiple interpolation methods
- Computation of confidence intervals
- Able to read in GRIB1, GRIB2 and CFcompliant NetCDF
- Applied to many spatial and temporal scales
- 3300+ users, both US & Int'l

Object Based and Spatial Methods

Geographical Representation of Errors

Series Analysis Tool

90th Percentile of difference between two models

Cyclone Relative Evaluation System within Model Evaluation Tools (MET)+

Cyclone Relative Evaluation System

- **Reformat modified ATCF file** into a format MET can read using scripting
- Extract pertinent Lat/Lon pairs from track info
- Extract Tiles dimensions user defined
 - Option 1 extract to a separate file and throw away other data (saves space)
 - Option 2 Pass Lat/Lon to MET gen_vx_mask tool mask field on the fly (saves complexity)
- NOTE: Any field in the gridded files may be used (e.g. state variables and wind speeds, stability indicies, precipitation)

Cyclone Relative Evaluation System

- Pass a series of tiles or masks into MET Series_Analysis tool
- Use new option "force" to tell
 Series_Analysis to disregard
 displacement errors
- Compute statistics
 - RMSE, Bias, etc...
 - CSI, ETS, Freq. Bias etc...
- Gridded score fields and asci output written
- Scores Plotted and Disseminated

R2O through EMC

90N

80N

70N

60N

401

30N

Preliminary Results

- Uses TC-Pairs and TC-Stat to identify location of and extract tiles
- "Stack up" tiles by lead or init time to compute systematic errors about "feature" using Series-Analysis
- Plot results using Plot-Data-Plane (quick-look plotting)

Preliminary Results Using EMC Cyclone Tracks for GFS (6-12 h forecasts Dec 2016-Feb2017)

Sea-level Pressure Mean Error (hPA)

500 hPa Geo Hght Mean Error (m)

series_F000_to_F012_PRMSL_Z0.nc

Recent/Future Work: Transition to Feature Relative Evaluation System

Other Applications

- Tropical Cyclones
- Feature centric evaluations such as snowbands, extreme precipitation and turbulence
- Storm centric evaluation of MCSs, Convective Lines and other storms

Cyclone Relative Evaluation System within Model Evaluation Tools (MET)+

Next Steps

System Next Steps

• Work with WPC and EMC Staff to demonstrate the use of the software for operational evaluation (e.g., ExTC, snow bands, TCs, etc...)

R2O Speed Bumps and Concerns

 Availability of the development side of NOAA WCOSS HPC is sporadic and making it challenging the past few months to transition the MET+ for feature relative verification to developers at EMC;

Research Next Steps

• Complete Analysis to better understand cyclone biases and large error events using MET+ and submit for publication

Thank you and Questions?

Contact: Brian Colle – <u>brian.colle@stonybrook.edu</u>

Tara Jensen – jensen@ucar.edu

MET Helpdesk: met_help@ucar.edu

http://www.dtcenter.org/met/users/support/met_help.php

Stony Brook University: <u>http://www.somas.stonybrook.edu/</u>

