

Improvement of Convective/Severe Weather Prediction through an Integrative Analysis of WRF Simulations and NEXRAD/GOES Observations over the CONUS

PI: Dr. Xiquan Dong, University of Arizona

Co-Is: Drs. Aaron Kennedy and Matt Gilmore, Uni. Of North Dakota

NOAA Collaborator: Adam Clark, NSSL (HWT)

2 August 2017 - NGGPS PI Meeting

- Objective 1: Evaluation of WRF simulated convection and precipitation
 - At SGP and NGP using Stage IV data
 - At SGP and NGP by Meteorological Regimes.
- Objective 2: Develop and determine best practices for a WRF microphysics ensemble
 - Improve severe wx forecasting, through determining
 - biases in WRF microphysics schemes
 - best performing WRF microphysics scheme

Supported Following Graduate Students

Ph.D students at University of Arizona

- Jingyu Wang: Using Stage-IV to evaluate WRF simulated precipitation
- Ted McHardy: Using GOES satellite data to evaluate WRF simulated convective cloud properties.

MS students at University of North Dakota

- David Goines: Using Stage-IV to evaluate NSSL and NCEP WRF simulated precipitation (working at Valparaiso University)
- **Brooke Hagenhoff: Using SOMs to evaluate WRF** simulated precipitation (graduating, will work at NWS IA)
- Joshua Markel: Determining best WRF microphysics scheme (working at Mission Support Alliance)

NOAA

Publications

Papers Submitted:

- Wang, J., X. Dong, B. Xi, B. Hagenhoff, and A. Kennedy, 2017: Statistical comparisons of warm season convective rain properties and diurnal cycle between SGP and NGP regions. Submitted to J. Hydrometeo.
- McHardy[,] T.M., X. Dong, B. Xi, M. M. Thieman, and P. Minnis, 2017: Comparison of Daytime Low-Level Cloud Properties Derived from GOES and ARM SGP Measurements. Submitted to JGR.
- Goines, D. and A. Kennedy, 2017: Precipitation from a Multi-Year Database of Convection-Allowing WRF Simulations. Submitted to JGR.

Papers in Preparation

- Wang, J. X. Dong et al. 2017: Quantitative diagnosis the NSSL WRF simulated warm season convective rain over SGP and NGP. Will submit to J. Hydrometeo.
- Mchardy, T.M. X. Dong et al., 2017: Evaluation of WRM simulated convective cloud properties using GOES satellite results. Will submit to JGR.
- Hagenhoff, B., A. Kennedy etc, 2017: Assessment of WRF Simulated Precipitation over the Northern and Southern Great Plains by Meteorological Regimes. Will submit to Weather and Forecasting.
- Markel, J. M. Gilmore etc 2017: Precipitation biases in severe convective storms revealed within a WRF cloud microphysics ensemble. Will submit to Weather and Forecasting.

Objective I

Evaluation of WRF simulated Warm Season (4-9) Convective Rain (CR, >5 mm/hr) at SGP and NGP using Stage IV data (by Wang and Dong)

Study Domain

SGP and **NGP** are chosen for their marginal locations within mid-latitudes (30° – 60° N)

	CAPE (J Kg ⁻¹)	Vapor Flux (Kg m ⁻¹ s ⁻¹)		
NGP	473.90	72.26		
SGP	817.73	318.45		

SGP features much larger CAPE and vapor availability → higher CR intensity.

Issue: Current WRF model using one precip. parameterization from 30 to 60°N. Does it work well for both SGP and NGP?

Spatially Averaged Annual CR Amount

(mm)	Stage IV	NSSL WRF
SGP	276	289
NGP	164	231

<u>Conclusion:</u> From annual total and spatial distribution, WRF agrees well with Stage IV at SGP but oversimulates at NGP.

Warm Season Annual Accumulated CR Amount (2010-2012)

Spatially Averaged Annual CR Hour

<u>Conclusion:</u> Again, WRF simulated precipitation hours agree better with Stage IV at SGP than at NGP.

Warm Season Annual Accumulated CR Duration (2010-2012)

Comparison on daily averaged CR intensity

Stage IV: Location parameter μ = 2.25 vs μ = 2.09. Dispersion
 σ = 0.266 vs. σ = 0.244. Larger and wider at SGP than at NGP
 WRF: Better at SGP, but NGP greatly skewed to the right.

Hourly total CR amount over the entire study domain for each CR intensity category

(Light< 25%, 25%<Moderate<75%, Heavy>75%)

		All CR	Heavy	Moderate	Light
SGP 388 cases (98/216/86)	Stage IV	1065 mm 0.77 %	2627 mm 1.70 %	693 mm 0.57 %	86 mm 0.10 %
	WRF	1007 mm 0.72 %	1680 mm 1.15 %	859 mm 0.62 %	546 mm 0.44 %
NGP 340 cases (96/181/63)	Stage IV	520 mm 0.62 %	1213 mm 1.26 %	314 mm 0.46 %	57 mm 0.10 %
	WRF	720 mm 0.64 %	1045 mm 0.83 %	668 mm 0.62 %	371 mm 0.40 %

Conclusion: WRF agrees with Stage IV from 700-1200 mm, but undersimulates for heavy and oversimulates for light cases. **Suggestion:** Was WRF precip para developed from CR=700-1200 mm? So it under for CR>1200 mm and over for CR< 700? Need new para?

Diurnal Variations of CR amounts at SGP and NGP

SGP

- **1.** For heavy cases, WRF agrees with Stage IV from 06-16 LT, but undersimulates from 16-06 LT.
- **2. For moderate cases, best match until 15 LT, then deviate.**
- **3. For light cases, WRF oversimulates entire day.**

SGP Categorical Scores for WRF-simulated 24-hr precip.

83.93

12.51

1.20

Light

720

640

160

NGP Categorical Scores for WRF-simulated 24-hr precip.

NGP	POD (%)	FAK (%)	CSI (%)	
Heavy	10.55	90.78	2.48	Compa
Moderate	11.09	90.79	2.73	lower,
Light	6.35	94.67	1.71	

Compared to SGP, IGP POD and CSI are ower, FAR is higher

Objective I

Assessment of WRF Simulated Precipitation over the Northern and Southern Great Plains by Meteorological Regimes (Hagenhoff and Kennedy)

- Patterns classified using data from NARR
- Self Organizing Maps (SOMs) a type of competitive neural network used for the classifications
 - Red boxes: Precipitation analysis
 - Blue Boxes: NARR domain used for SOMs

SGP – Precipitation Statistical Analysis

MSLP and 900 mb RH

Light	Moderate	Heavy
86 mm	693 mm	2627 mm
0.10 %	0.57 %	1.70 %
546 mm	859 mm	1680 mm
0.44 %	0.62 %	1.15 %

 Light CR associated with frontal systems, WRF oversimulates

 Heavy CR associated with strong drylines, WRF undersimulates

NGP – Precipitation Statistical Analysis

MSLP and 900 mb RH

Daily Precip. Bias

Heavy	Moderate	Light		
1213 mm	314 mm	57 mm		
1.26 %	0.46 %	0.10 %		
1045 mm	668 mm	371 mm		
0.83 %	0.62 %	0.40 %		

Positive precipitation bias dominates the region

- Precipitation is driven by strong forcing events and is more often less convective in nature compared to SGP (light CR)
- Negative trend is associated with propagating convection although it is less freq. (Heavy CR)

Objective 1: Priorities, Milestones, and Challenges

Conclusions:

- **1. SGP** features larger CR amount, duration and coverage than those at NGP
- **2. WRF simulations agree with Stage IV better at SGP than at NGP.**
- 3. Negative bias associated with strong drylines, while positive bias associated with frontal systems at Great Plains.

Priorities/Milestones (Will finish following 3 papers)

- 1. Evaluating SGP and NGP WRF simulated precipitation using Stage IV data (Wang)
- 2. Evaluating SGP and NGP WRF simulated convective cloud properties using GOES data (McHardy)
- **3. Assessment of WRF simulations at SGP and NGP by Meteorological regimes** (Hagenhoff)

<u>Challenges</u>

- As demonstrated in this study, SGP and NGP CR amounts, duration and coverages are significantly different, should we modify the current WRF CR parameterization in the middle latitudes in the future?
- 2. Even though the overall simulations are optimal, WRF still has trouble distributing CR precipitation into heavy, moderate and light categories?
- 3. How can we incorporate the synoptic patterns into weather forecasting?

Detailed analysis of a WRF Microphysics Ensemble (By Markel and Gilmore)

Goal: Improving severe wx forecasting, through determining

- biases in WRF microphysics schemes
- best performing WRF microphysics scheme

- 77 case dates
 - 46 retro: Apr-Sep 2010-'12
 - 31 real-time: Apr-Jun 2016
- 3 km grid spacing
- MODE-TD analysis
- Compared to Stage IV obs

Markel et al. (2017)

- 77 case dates
 - 46 retro: Apr-Sep 2010-'12
 - 31 real-time: Apr-Jun 2016
- 3 km grid spacing
- MODE-TD analysis
- Compared to Stage IV obs
- Four micro schemes

Example at hour 17

Markel et al. (2017)

- Consider all case days
- Vertical bars: average of 90th percentile over all tracked objects
- WSM6 and Milbrandt schemes have heaviest precip. rate bias

90th Percentile Precip. Rate (mm h⁻¹) for tracked objects occurring within a 24 hour period beginning 12 UTC for all 77 case days

NORTH DAKOTA

Markel et al. (2017)

MODE-TD	Thomp	Mil-	WSM-	Morr-
	-son	brandt	6	ison
Total # detected objects	т			7
# detected objects w/ time (#)				/ /
% detected objects w/ time (%)				1
Size distribution (#)	Т			Т
Size distribution (%)	-	-	-	-
Size with time		1		
# Initiated (#)	т			Т
% Initiated (%)		т		Т
Dissipated (#)	Т			т
Dissipated (%)		т	т	T
Duration (#)	т			т
Duration (%)			\checkmark	
10 th Percentile average				1
25 th Percentile average				1
50 th Percentile average			\checkmark	
75 th Percentile average	\checkmark			
90 th Percentile average				1
Object velocity	-	_	_	1-1

- ✓ Best (closest to Stage IV obs)
- T Tie for best
- No clear best

Note that all schemes...

- Overpredict # of small objects
- initiate & dissipate too early

Overall: Morrison microphysics preforms best

Method for Object-Based Diagnostic Evaluation-Time Domain (MODE-TD).

Objective 2: Priorities, Milestones, and Challenges

Finished:

• Overall: Morrison microphysics preforms best

Priorities/Milestones (Will finish following paper)

 Precipitation biases in severe convective storms revealed within a WRF cloud microphysics ensemble. Will submit to Weather and Forecasting (by Markel)

Challenges (same as Obj. 1)

All WRF microphysics schemes...

- Overpredict # of small objects
- initiate & dissipate too early

Backup

Accuracy analysis on 6-hr interval (comparing WRF and Stage IV based on 6-hr accumulated CR)

SGP		POD (%)	FAR (%)	CSI (%)	NGP		POD (%)	FAR (%)	CSI (%)
Heavy	0000-0005 LT	4.14	90.40	1.21		0000-0005 LT	3.33	98.26	0.32
	0600-1100 LT	1.39	96.34	0.72	Hoony	0600-1100 LT	0.18	99.97	0.00
	1200-1700 LT	5.66	95.67	0.75	neavy	1200-1700 LT	2.07	98.74	0.27
	1800-2300 LT	3.42	95.57	0.99		1800-2300 LT	0.97	99.31	0.18
Moderat e	0000-0005 LT	2.77	94.30	0.78		0000-0005 LT	2.15	98.42	0.34
	0600-1100 LT	3.89	95.85	0.75	Moderat e	0600-1100 LT	0.24	99.81	0.05
	1200-1700 LT	4.74	96.53	0.78		1200-1700 LT	2.50	99.01	0.29
	1800-2300 LT	3.89	95.13	1.02		1800-2300 LT	1.30	98.17	0.38
Light	0000-0005 LT	3.13	93.55	0.63		0000-0005 LT	1.27	99.57	0.15
	0600-1100 LT	0.67	96.92	0.36	Light	0600-1100 LT	0.27	99.98	0.00
	1200-1700 LT	4.79	96.04	0.41		1200-1700 LT	1.66	98.49	0.21
	1800-2300 LT	2.84	98.18	0.69		1800-2300 LT	1.30	99.65	0.18

Conclusion:

- 1. For SGP POD, best performance is found at the third quarter of the day
- 2. For NGP POD, best H at first quarter, best M and L at third quarter

Hit: an coincidence of Stage_IV and WRF Mis: Stage_IV observation without collocated WRF simulation Fal: WRF simulation without collocated Stage_IV observation.

POD: probability of detection

$$POD = \frac{\# of Hit}{\# of Hit + \# of mis}$$
FAR: false alar
$$FAR = \frac{\# of fal}{\# of Hit + \# of fal}$$
CSI: critical suc
$$CSI = \frac{\# of Hit}{\# of Hit + \# of mis + \# of fal}$$

Strategy: Objective 1

Datasets

- NSSL WRF HWT simulations (4km, 2007-2014)
- NCEP WRF NMM simulations (4km, 2010-2012)
- NCEP Stage-IV precipitation
- UND Hybrid classification product (2010-2013)
 - NEXRAD/GOES data
 - Define convective core / stratiform areas (radar) and anvil regions (satellite)

Strategy

- Climatological assessment (biases/Hovmöllers/object tracking)
- Utilize Self Organizing Maps (SOMs) to classify synoptic patterns (both climatology and for precipitation cases)
- Develop a historical database of cases for use in Ob. 2

Summary of Precipitation Biases

- NSSL/NCEP 4 km deterministic runs, April-Sept 2010-2012
- Goines and Kennedy (2017), rev. submitted to JGR Atmospheres
- *Note, NCEP runs were NMM core, now replaced with NMMB.
- Discussion limited to NSSL runs

Monthly Hovmöller Diagrams of Precip.

- Separated into three latitude regions
- Bias plotted (blue colors = model deficit)

- Persistent deficit in western half of domain during overnight hours (propagating MCS)
- Positive bias from 18-00 UTC (diurnal signal) over eastern half of domain
- •

• Deliverables:

- Real time/Retrospective MP ensemble
- Fundamental question: How to transition gained knowledge to operational forecasting
 - Forecaster usage?
 - On-demand ensembles. How to make choices on the fly (and how does this relate to ensembles that vary I.C./B.C.)?
 - Some offices run nested deterministic runs for localized forecasting... utility for picking best physics?
- What can be implemented by the 2017 HWT SFE? How does this knowledge transfer to other products (i.e. NSSL probabilistic severe wx hazards)?

Questions?