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I. Introduction 
 
On April 30th, 2015, the Advanced Computing Evaluation Committee (AVEC) submitted the 
computational performance and scalability results from Level-1 benchmarks of five Next 
Generation Global Prediction System (NGGPS) candidate models. This addendum provides a 
preliminary evaluation of the candidate model software as described in Section VI of the AVEC 
report and as called for in the Next Generation Global Prediction System (NGGPS) Dynamic 
Core Testing Plan (Section V).  The software evaluation is intended to highlight strengths and 
identify potential weaknesses with respect to maintainability, extensibility, development process, 
and performance portability of the candidate software packages in their current states, which 
are assumed to be preliminary.  The evaluations involve review of self-reports by the candidate 
model groups in the form of responses to a questionnaire1  (completed), follow-up interviews 
and inspection of code (in progress), and review of documentation (not yet begun). The 
following interim evaluation is provided at this time to coincide with release of the completed 
parts of the Phase-I Test Report to the Dynamic Core Test Group.  Committee members 
Benson, Black, Michalakes, Reinecke, and Skamarock approve this report addendum; one 
committee member, Mark Govett, has indicated his dissent. 
                                                 
1 See “NGGPS Level-1 Software Evaluation Criteria and Procedures”, AVEC report to NGGPS program, 
December 11, 2014. 
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In general, we found nothing in the software design, implementation, or practices to invalidate 
any candidate model outright.  Different models are at different levels of maturity.  The size and 
makeup of the developer groups and level of support they provide also vary, but a more detailed 
evaluation will be needed to estimate the effort and resources required to bring a given model to 
a state of readiness for NGGPS.   
 
Table 1 provides a summary of the modeling group responses to the software evaluation 
questionnaire.  The candidate cores are listed as column headings: FV3 (GFDL), NMM-UJ 
(NCEP), MPAS (NCAR), NIM (ESRL), and NEPTUNE (NRL).  ECMWF provided responses for 
the IFS model to the software evaluation questionnaire which were reviewed by AVEC but are 
not included in the summary, since IFS is not an NGGPS candidate.  The following paragraphs 
provide additional explanation. 
 
Programming language.  All of the models are written in standard Fortran.  The FV3 model is 
able to make use of “Co-Arrays”, a feature in the Fortran 2008 language standard for exploiting 
very-low latency one-sided message-passing where supported (e.g. Cray systems).  Some of 
the models (FV3, MPAS, and NEPTUNE) have additional lower level or library infrastructure 
support that is written in another language such as C.  This practice is widely accepted within 
the NWP software development community. 
 
Parallelism:  Message Passing.  All of the models use standard Message Passing Interface 
(MPI) mechanisms for coarse-grain distributed-memory parallel decomposition and computation 
of their forecast domain over multiple processes for running on large HPC clusters.  While the 
grids and mechanical details of task-parallelism differ, all of the candidate models exploit 
parallelism in the two horizontal dimensions of their forecast domain, and all implement a 
“nearest-neighbor” pattern of message passing that allows weak scaling to arbitrarily large grid 
sizes and processor counts. 
  
Parallelism: Thread-parallelism.  Threads provide medium-grain parallelism over multiple 
processor cores that share access to memory on a node. Threads may also provide 
concurrency within a single core, which may allow the code to better tolerate memory access 
latency.  Both uses are important for efficiency on next-generation processor architectures (MIC 
and GPU) as well as current and future generations of conventional processors containing large 
numbers of processor cores. 
 
FV3, NIM, and NMM-UJ implement thread-parallelism at the level of individual loops: that is, 
different iterations of a loop that has been annotated with an OpenMP directive run in parallel on 
different threads that synchronize at the beginning and end of the loop.  Neither MPAS nor 
NEPTUNE currently support thread parallelism; they rely on MPI-parallelism alone. Both groups 
responded that OpenMP thread-parallelism is planned. 
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In FV3 and NMM-UJ, the threaded dimension may vary in different sections of the code – 
thread-parallel loops may be over the vertical dimension in some places and over a horizontal 
dimension in others.  Depending on computer architecture and the access and reuse patterns of 
a computation, switching between thread-parallel dimensions may cause unnecessary data 
movement between caches or NUMA2 regions. NIM consistently threads loops over only one 
(horizontal) domain dimension. 
 
Storage/Loop nesting Order:   
 
The choice of inner-loop and innermost (fastest running) array indices will have implications for 
optimizing for fine-grained (vector or SIMT3) performance on both novel (GPU and MIC) and 
conventional processor architectures.  The appropriateness of a storage/loop nesting order may 
vary between different phases of the computation (dynamics versus physics) or between 
different discretizations.  Table 1 lists the choices for storage/loop-nesting order reported by the 
modeling groups. 
 
Extensible Software Design.  A well-architected design that manages tradeoffs between 
performance and flexibility is crucial for developing, maintaining, extending and supporting NWP 
model software across a range of current and future platforms to the community of users, from 
research to operations.  Fully understanding and managing the design and implementation of an 
NGGPS candidate will be ongoing and demanding.  The evaluation here is preliminary. 
 
FV3, NIM and MPAS are rigorously architected with ESMF-conforming Init/Run/Finalize calling 
interfaces for major structural components and are readily adaptable to NEMS.  FV3 conforms 
to and runs within GFDL’s Flexible Modeling System (FMS), an ESMF precursor.  NIM’s sister 
model FIM is already part of the NEMS/ESMF framework at NCEP.  NMM-B, NCEP’s earlier 
NGGPS candidate, is in NEMS and features the most developed moving nest capability of the 
candidate models.  However, the NMM-UJ code that replaced NMM-B in the NGGPS testing 
has a flat program structure indicating a quickly constructed prototype.  The NEPTUNE model, 
also relatively new, has a similar flat main program structure but, like the NMM-UJ, is 
consistently modular underneath.  
 
Nesting or Mesh Refinement.  Models of performance requirements for global NWP indicate 
that very high resolution (3 km and higher) simulations will be possible on next generation HPC 
systems, but very expensive in terms of resources, including electricity.4  From a cost point of 

                                                 
2 Non-uniform memory access, a type of memory system architecture employed on many systems with 
multi-processor nodes. 
3 Single Instruction, Multiple Thread, which is fine-grained parallelism over GPU threads (distinct from 
medium-grained parallel OpenMP threads). 
4 Michalakes, J.  NOAA Operational Forecasting and the HPC Imperative.  16th ECMWF Workshop ojn 
HPC in Meteorology. Reading, U.K.  October, 2014.  http://www.ecmwf.int/sites/default/files/HPC-WS-
Michalakes.pdf  
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view, uniform very high resolution deterministic forecasts over a global domain may never be 
feasible for day-to-day operational forecasting, even with exascale computers.  Therefore, a 
model’s ability to focus resolution over a region of interest through in-place mesh refinement or 
nesting is likely to be an NGGPS requirement for the foreseeable future.  In-place mesh 
refinement involves a single mesh that has increased numbers of smaller grid cells over an area 
of refinement.  The refinement may be static or adaptive.  A nest is a separate higher resolution 
mesh that receives forcing information from a lower resolution parent domain (1-way interaction) 
and that may also feed information back to the parent (2-way interaction).  The location of a nest 
may be fixed within the parent domain or it may move to follow of a feature of interest in the 
simulation (e.g. a hurricane). 
 
MPAS and NEPTUNE provide in-place mesh refinement.  MPAS implements static refinement 
with no plans to implement adaptive or moving areas of refinement.  NEPTUNE plans to have 
adaptive mesh refinement.  FV3 currently supports refinement via static, nested regional grids 
and stretched grids, with plans to provide movable nests that are restricted to be wholly 
contained within the boundaries of one face of the cubed-sphere. EMC plans to transfer moving 
nest mechanisms currently implemented in NMM-B to NMM-UJ.  NIM has plans to provide 1- or 
2-way interactive nesting capability. 
  
Coding practices.  Fortran provides a number of standard language features that allow the 
programmer to make assertions about the code that are automatically checked for correctness 
when the code is compiled. The IMPLICIT NONE statement allows the compiler to check for 
misspelled, mistyped or otherwise undeclared variables.  The INTENT attribute allows the 
compiler to check whether an argument to a subroutine or function has been incorrectly 
accessed or assigned.   Argument keywords provide another mechanism for argument 
agreement checking.  With regard to physics interfaces, adherence to the Kalnay et al.5,6 rules 
helps make physics more interoperable between models.  All of the models use IMPLICIT 
NONE statements and INTENT attributes.  FV3 uses argument keywords consistently; the other 
models use argument keywords to some extent.  FV3, NMM-UJ, and NIM use Kalnay-
conforming physics interfaces. 
 
Reproducibility.  Two forms of reproducibility were evaluated: the ability to give the same 
results of a simulation running on different numbers of processors and the ability to give the 
same result for a run that is stopped and then restarted.  FV3 and NIM provide both bit-for-bit 
restarts and bit-for-bit results on different numbers of processors.  NIM also has demonstrated 
bit-for-bit reproducibility between the CPU, MIC and GPU for its dynamical core. NMM-UJ 

                                                 
5 E. Kalnay, M. Kanamitsu, J. Pfaendtner, J. Sela, J. Stackpole, J. Tuccillo, M. Suarez, L. Umscheid, and D. 
Williamson, 1989: Rules for Interchange of Physical Parameterizations. Bull. Amer. Meteor. Soc., 70, 620–622. 
doi: http://dx.doi.org/10.1175/1520-0477(1989)070<0620:RFIOPP>2.0.CO;2 
6 Doyle, et al., 2015.  Revisiting Kalnay’s “Rules for Physics Interoperability” 25 years later.”  Presentation 
to Eugenia Kalnay Symposium, Amer. Met. Soc. Annual Meeting.  Phoenix, Arizona. 
https://ams.confex.com/ams/95Annual/webprogram/Paper260152.html  
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provides bit-for-bit results on different numbers of processors and bit-for-bit restarts are 
planned.  MPAS provides bit-for-bit restarts; bit-for-bit agreement of results on different numbers 
of processors is planned but not yet implemented in MPAS.  NEPTUNE provides bit-for-bit 
restarts but does not provide bit-for-bit agreement of results on different numbers of processors.   
  
Advanced Architectures:  Only the NIM model is capable of running on GPU and MIC.  Other 
models have advanced architectures in their plans. 
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Table 1:  Summary of Responses to Software Evaluation Questionnaires 

 

FV3 NMMUJ MPAS NIM NEPTUNE

Languages Fortran, Co-Array Fortran, and C Fortran Fortran and C Fortran Fortran and C

MPI
2D horz. decompos i tion and 

over cube faces ;
Nearest neighbor

2D horz. decompos i tion and 
over cube faces ;

Nearest neighbor

2D horz. decompos i tion;
Nearest neighbor

2D horz. decompos i tion;
Nearest neighbor;

Speci fied with SMS (ESRL tool ) 
di rectives

2D horz. decompos i tion;
Nearest neighbor

 OpenMP
Loop-level , threaded dimens ion 
varies ; subroutine level  around 

phys ics

Mostly loop-level , threaded 
dimens ion varies ;

Subroutine level  over radiation

Planned (1-2 years );
Subroutine level

Loop level , threading i s  
cons is tently over horizonta l  
dimens ion; subroutine level  

around phys ics

Planned

Storage/Loop 
Nesting Order

IJK IJK K-innermost K-innermost K-innermost

Extensible 
software design

Abstraction layers  and APIs  for 
domain defini tion & mgmt., 

comms, I/O, etc.;
Supports  Ini t/Run/Fina l i ze 

component interfaces ; Uses  
FMS Framework

Use of Fortran MODULES;
Flat program structure 

(everthing ca l led from main);
NEMS/ESMF (planned)

Abstraction layers  and APIs  for 
domain defini tion & mgmt., 

comms, I/O, etc.;
Supports  Ini t/Run/Fina l i ze 

component interfaces

Abstraction layers  and APIs  for 
domain defini tion & mgmt., 

comms, I/O, etc.;
Supports  Ini t/Run/Fina l i ze 

component interfaces

Use of Fortran MODULES (I/O, 
domain decompos i tion, phys ics , 

dynamics  right hand s ide, 
dynamics  time integration, etc.).  

Flat program structure.  

Nesting/Refine
ment

Nesting within a  cubed-sphere 
face or s tretched grid; 1-way and 

2-way;  s tatic (non-moving); 
plans  for moving nests

Plans  for moving 1- and 2-way 
interacting nests ; no geographic 

restrictions  on movement

In-place refinement (inherently 
2-way); s tatic (non-moving) 

refinement

Plans  for  1- and 2-way 
interacting nests ; 

s tatic (non-moving)

In-place refinement (inherently 
2-way); adaptive mesh 

refinement planned; no cost 
estimate

Coding practices

IMPLICIT NONE;
INTENT(IN/OUT/INOUT);

Argument keywords  used;
Ka lnay-conforming phys ics  APIs

IMPLICIT NONE;
INTENT(IN/OUT/INOUT);

Some argument keywords ;
Ka lnay-conforming phys ics  APIs

IMPLICIT NONE;
INTENT(IN/OUT/INOUT);

Some argument keywords

IMPLICIT NONE;
INTENT(IN/OUT/INOUT);

Argument keywords  used;
Ka lnay-conforming phys ics  APIs

IMPLICIT NONE;
INTENT(IN/OUT/INOUT);

Some argument keywords

Reproduciblity
Bit-for-bi t reproducible on 

di fferent core counts ; 
Bi t-for-bi t restarts

Bi t-for-bi t reproducible on 
di fferent core counts ; 

Bi t-for-bi t restarts  (planned)

Not bi t-reproducible on 
di fferent numbers  of MPI tasks  

(but under development); Bi t-for-
bi t restarts

Bi t-for-bi t reproducible on 
di fferent core counts ; 

Bi t-for-bi t restarts

Not bi t-reproducible on 
di fferent numbers  of MPI tasks ; 

Bi t-for-bi t restarts

Current and 
Advanced 

Architectures

Origina l ly developed for vector 
systems; has  adapted to each 

new archi tectura l  paradigm and 
now developed and supported 

on conventional  multi -core 
processors .  Hybrid MPI/OpenMP 

makes  wel l  sui ted for MIC; 
exploring GPU with di rectives -
based or CUDA programming 

models .

Developed and supported on 
conventional  multi -core 

processors ;
RRTMG phys ics  has  been 

adapted to accelerators  (MIC 
and GPU).

Developed and supported on 
conventional  multi -core 

processors .  No efforts  currently 
for novel  archi tectures .

Developed and supported as  
s ingle-source on conventional  

multi -core, MIC and GPU.

Developed and supported on 
conventional  multi -core 

processors .  Testing kernels  on 
MIC and GPU.


