WSR-88D Supplemental Adaptive Intra-Volume Low-Level Scan (SAILS) DQ Decision Brief

Joe N Chrisman

Supplemental Adaptive Intra-Volume Low-Level Scan (SAILS)

Concept

- Add a new Low-Level* scan to existing severe weather VCPs 12 and 212
- Insert this new low-level scan into the "middle" of the volume scan
 - The "middle" is adaptive because volume scan completion times vary due to AVSET*

Low-Level* – the lowest elevation angle for the active VCP, usually 0.5°

AVSET* – Automated Volume Scan Evaluation and Termination

How Does SAILS Work?

In the example illustrated by the three figures to the right, the radar is operating in VCP 12 with a termination angle of 19.5° (either AVSET is not active or AVSET is active and there are storms near the RDA). In this scenario, the "middle" of the volume scan is ~140 seconds which results in collecting the Supplemental Low-Level scan after completion of the 3.1° elevation cut.

When SAILS is active:

- the radar scans up through the middle of the volume scan, 3.1° elevation cut in this example (Figure 1)
- transitions down to collect the supplemental 0.5° split cut data (Figure 2) then
- elevates to 4.0°, in this example (Figure 3), to resume collecting data to complete the volume scan.

VCP 12 with SAILS Insertion Points

Elevation Angles (VCP 12)	VCP 12 Elevation Duration	Termination Angle = 19.5	AVSET Termination Angle = 15.6	AVSET Termination Angle = 12.5	AVSET Termination Angle = 10.0	AVSET Termination Angle = 8.0	AVSET Termination Angle = 6.4
0.5°	31 Sec	31 Sec	31 Sec	31 Sec	31 Sec	31 Sec	31 Sec
0.9°	31 Sec	31 Sec	31 Sec	31 Sec	31 Sec	31 Sec	31 Sec
1.3°	31 Sec	31 Sec	31 Sec	31 Sec	31 Sec	31 Sec	31 Sec
1.8°	15 Sec	15 Sec	15 Sec	15 Sec	15 Sec	15 Sec	15 Sec
0.5°						31 Sec	31 Sec
2.4°	14 Sec	14 Sec	14 Sec	14 Sec	14 Sec	14 Sec	14 Sec
<mark>0.5°</mark>				31 Sec	31 Sec		
3.1°	14 Sec	14 Sec	14 Sec	14 Sec	14 Sec	14 Sec	14 Sec
<mark>).5°</mark>		31 Sec	31 Sec				
4.0°	14 Sec	14 Sec	14 Sec	14 Sec	14 Sec	14 Sec	14 Sec
5.1°	14 Sec	14 Sec	14 Sec	14 Sec	14 Sec	14 Sec	14 Sec
5.4°	14 Sec	14 Sec	14 Sec	14 Sec	14 Sec	14 Sec	14 Sec
3.0°	13 Sec	13 Sec	13 Sec	13 Sec	13 Sec	13 Sec	
10.0°	13 Sec	13 Sec	13 Sec	13 Sec	13 Sec		
12.5°	13 Sec	13 Sec	13 Sec	13 Sec			
L5.6°	13 Sec	13 Sec	13 Sec				
19.5°	13 Sec	13 Sec					
Duration	243 Sec	274 Sec	261 Sec	248 Sec	235 Sec	222 Sec	209 Sec
0.5 Elevation Update Times	243 Sec *	136 Sec and 138Sec *	136 Sec and 125 Sec *	122 Sec and 126 Sec *	122 Sec and 113 Sec *	108 Sec and 114 Sec *	108 Sec and 101 Sec *
* Plus Rei	trace Time						

SAILS Implementation

- Insert a Split Cut into the "middle" of VCP 12 and VCP 212
 - Split Cut is a technique that scans an elevation twice
 - First, using a low PRF to measure power and accurately place targets in range
 - Second, using a high PRF to collect accurate velocity data
 - Split Cut Completion Time ~31 seconds
 - Surveillance scan = ~17 sec
 - Doppler scan = ~14 sec
- Split Cut Supports
 - Best GMAP clutter filtering
 - Super Resolution data processing
 - Range unambiguous Reflectivity
 - Best Doppler ambiguity mitigation

SAILS Implementation (Cont)

- Initially the new Supplemental Scan data
 - Will be used to generate Z/V/W base products
 - Will be included in Level II data stream
 - Will NOT be used by RPG algorithms
- Supplemental Scan data will ONLY be provided to tasks/algorithms upon request
- Supplemental Scan products ONLY sent to users in response to special RPS list option flag
 - Not automatically distributed
 - Same RPS list option flag used for SPG/TDWR

SAILS Implementation (Cont)

- SAILS software included in RPG Build 14 development baseline
 - Executed on ROC test bed radar several occasions in 2012
 - Level II data collected and available
 - No problems noted

Future

- Algorithm developers can use the Level II data to enhance/correct/rewrite algorithms to incorporate new low elevation data, if desired/appropriate
- Algorithm updates can be included in future RPG builds

Benefits of SAILS

- Significantly reduces low-level scan update interval
- Provides more low-level "looks" during severe weather operations

VCP 12	Number of 0.5° Product Updates per Hour	Volumetric Product Updates per Hour
Standard Operation	14	14
AVSET	14 - 19	14 - 19
SAILS	24	12
SAILS and AVSET	24 - 32	12 - 16

VCP 212	Number of 0.5° Product Updates per Hour	Volumetric Product Updates per Hour	
Standard Operation	13	13	
AVSET	13 - 17	13 - 17	
SAILS	22	11	
SAILS and AVSET	22 - 28	11 - 14	

Benefits of SAILS (Cont)

- Only extends VCP 12 volume scan completion time by ~33 seconds
 - VCP 12 still executes in less than 5 mins (~282 sec)
- Only extends VCP 212 volume scan completion time by ~40 seconds
 - VCP 212 executes in just over 5 mins (~310 sec)
- Does not impact the quality of the base data estimates
 - Same antenna rotation rates
 - Same data acquisition schemes
 - Same moment estimation methods
 - Same data processing techniques
- No Hard Costs

Concerns

- SAILS will increase bandwidth usage
 - Overhead at NWS sites adequate
 - SAILS not available on DOD radars until comms upgrade complete
- External user systems must make changes to see benefit of SAILS
 - No negative impacts expected
- Another VCP selection (option)

Summary

- Operating in VCP 12, SAILS will scan 0.5° every 110 - 144 seconds, depending of the AVSET termination angle (118 - 162 seconds in VCP 212)
- During severe weather operations, the frequent low-level "looks" provided by SAILS will significantly enhance WSR-88D forecast and warning support, while not impacting WSR-88D data quality or hardware operations
- SAILS is targeted for release with RPG Build 14

DQ Approval

 Request DQ approval for SAILS to be Operational in RPG Build 14

Questions ????

Backup Slides

BACKUP

Split Cut

- Completion time ~31 Sec
 - Surveillance = ~ 17 Sec
 - Doppler = ~14 Sec
- Supports GMAP Filtering
- Super Resolution
- Range unambiguous R data available
- Range unambiguous Dual Pol variables

Batch Cut

- Completion time ~30 Sec
 - Slow rotation to allow adequate Z samples to support GMAP filtering
- Azimuthal spacing does not support Super Res

BACKUP

Z only Cut

- Completion time ~17 Sec
- Supports GMAP Filtering
- Super Resolution Reflectivity only
- Dual Pol variables
- No Doppler data

V Only Cut

- Completion time ~14 Sec
- Supports GMAP Filtering
- Range unfolding relies on ~2 minutes old power data
- Range ambiguous R data
- Super Resolution
 Reflectivity and Doppler data
- No Dual Pol variables

SAILS – 0.5° VCP Updates Rate: Every ~140 seconds (~105 seconds w/ AVSET)

SAILS VCP Completion Times ~282 seconds (~210 seconds w/ AVSET)

