

Modeling Dust Generation and Deposition

Eduardo Saez, Michael Stovern, Matthew King, Kyle Rine, Omar Felix, Mary Jones, Victoria Raught, Solianna Herrera, Eric Betterton

Atmospheric Sciences and Chemical and Environmental Engineering, University of Arizona, Tucson, AZ

> Dust Storm Workshop Casagrande, Arizona, March 2015

Motivation: The Iron King Site

Iron King tailings impoundment

THE UNIVERSITY

- Superfund site since 2008
- Directly adjacent to the town of Dewey-Humboldt
- Highly contaminated (As, Pb)

Field site: Instrumentation

Eddy flux towers

- TSI DUSTTRAKs
- Anemometers

THE UNIVERSITY . OF ARIZONA.

- Wind vanes
- Thermometers
- Hygrometers
- Soil moisture probe
- Soil radiometer

MOUDI

- Micro-Orifice Uniform-Deposit Impactor
- Particle Size
 Fractionation

Dust Generation

Dust Generation

WRF Model

Initialization Weather Forecast

- Operational WRF model
 - 1.8-km spatial resolution (inner domain)
 - Hourly temporal resolution
- Analysis of WRF surface output
 - 10-m Wind Velocity
 - 2-m Temperature

THE UNIVERSITY • OF ARIZONA •

- 2-m Specific Humidity
- Surface Pressure

2-m temperature

10-m wind speed

Particle Trajectories

Equations of motion for individual particles coupled to WRF model predictions allow for determination of particle trajectories. Example: 10-µm particle

Deposition Forecasting Model

In situ verification

- Inverted-disc (Frisbee) samplers
 - Weight
 - Chemical composition
 - Lead isotopes

THE UNIVERSITY

- Month long sampling campaigns
 - May and June, 2014

DFM results for May 2014

THE UNIVERSITY Inverted-disc sampling results

Model (DFM PM27) vs Observed (lead concentration)

1. The deposition forecasting model can be used to predict transport and deposition of PM_{27} tailings dust

2. Arsenic and lead contaminants can be used as tailings dust tracers

3. DFM captured the spatial variations of the deposition patterns up to 1 km distance from the tailings

Next: Develop a realistic model for dust generation. First step: Measurement of threshold friction velocities

Portable Dust Generator

- Based on PI-SWERL (Etyemezian et al., 2007)
- A rotating annular ring provides shear to generate dust
- Wind speeds measured by a calibrated Irwin sensor
- Objective: to measure threshold friction velocities for dust generation

PDG: Preliminary data

Picacho Peak

Measured RPM — TSP Concentration

PM10 Concentration — PM2.5 Concentration

