National Blend of Models v3.2: DAS

Jeff Craven, David Rudack, and Robert James NOAA/NWS/OSTI/MDL/SMB

SAWS 8 Jun 7, 2019

Outline

- NBM Digital Aviation Services products
- NWP components and expert weights
- Techniques and Verification
- Example products
- Potential future probabilistic capabilities

Outline

- NBM Digital Aviation Services products
- NWP components and expert weights
- Techniques and verification
- Example products
- Potential future probabilistic capabilities

Suite of 65 NBM products produced

31 different NWP and MOS inputs from 5 different centers {NCEP, CMC (Canada), FNMOC (Navy), ECMWF, BoM Australia}

Temperature	Moisture	Precipitation	Wind	Winter	Fire Weather	Aviation	Marine
Temperature (Temp)	Relative Humidity (RH)	QPF 1 hour	10-m wind	Snow Amount, 1 hour	Haines Index	Sky Cover	Sig Wave Height
MaxT	MaxRH	QPF 6 hour	10-m wind gust	Snow Amount, 6 hour	Fosberg Index	Ceiling	Freezing Spray
MinT	MinRH	QPF 12 hour	30-m wind	Snow Amount, 24 hour	Solar Radiation	Visibility	Sea Ice Concentration
Apparent Temp	Dew Point Temperature	QPF 24 hour	80-m wind	Ice Amount, 1 hour	Mixing Height	Lowest Cloud Base	PMSL
Water Temp		Precipitation Duration		Ice Amount, 6 hour	Transport Wind	Echo Tops	
		PoP01		Ice Amount, 24 hour	Ventilation Rate	VIL	
		PoP06		Conditional Probability of Snow	Prob Dry Thunder 3 hour	Max Hourly Reflectivity	
		PoP12		Conditional Probability of Rain		LLWS Speed	
		Predominant Weather		Conditional Probability of Sleet		LLWS Height	
				Conditional Probability of Freezing Rain		Elrod CATurb	
				Conditional Probability Refreeze Sleet		MtnWaveTurb	
				Probability of Ice Present		MUCAPE	
				Max Wet Bulb Temp Aloft		Prob Thunder 1 hour	
				PosEWarmLayer (Bourgouin)		Prob Thunder 3 hour	
				NegEColdLayer (Bourgouin)		Prob Thunder 12 hour	
				SnowLevel			4
				SnowLiquidRatio			

NBM runs every hour

- Just like LAMP and HRRR/RAP
- Time of Day notation: 12z NBM does not have any 12z guidance in it
- 12z NBM (example) has 11z GLMP, 10z HRRR and RAP, 06z NAMNest, etc

NBM v3.2 Aviation core elements

- 10-m wind speed and direction
- 10-m wind gust (top of hour)
- Sky Cover
- Ceiling
- Visibility
- Lowest Cloud Base (Cloud Base Primary)

NOTE: All at 2.5km resolution in CONUS

NBM v3.2 Aviation - others

- LLWS Speed and Direction
- LLWS Height
- 30-m and 80-m wind speed
- Echo Tops
- Max Hourly Reflectivity
- VIL
- Elrod Index Turbulence (300-400 mb)
- Low Level Mountain Wave Turbulence
- Prob Thunder 1, 3, and 12 hour

NBM v3.2 Aviation - even more

- SBCAPE (Surface based)
- Snow Level (0.5C Wet Bulb height AGL)
- SnowAmt01
- IceAmt01
- QPF01
- Prob Snow, Freezing Rain, Sleet
- Predominant Weather

Outline

- NBM Digital Aviation Services products
- NWP components and expert weights
- Techniques and verification
- Example products
- Potential future probabilistic capabilities

Ceiling/Visibility/Lowest Cloud Base

NWP components and expert weights

Ceiling CONUS 9 total inputs: 6 DMO, 3 MOS

NW	Ρ		Weight (%) in forecast ho											
	1-16	17-34	35-36	37-46	47-58	59-79	80+							
HRRR	15													
HRRRX	5	20												
GMLP-Meld	50	50	50											
HiResW ARW	5	5	5	10										
HiResW NMMB	5	5	5	10										
HiResW Mem2	5	5	5	10										
NAMH	5	5	10	15	25									
GMOS GFS	5	5	12	27	37	50	50							
GMOS NAML	5	5	13	28	38	50	50							
	100	100	100	100	100	100	¹¹ 100							

Lowest Cloud Base CONUS (AKA Cloud Base Primary)

16 total inputs: 6 DMO, 10 RH blend

NWP Weight (%) in forecast hour

	1-16	17-19 20-34		35-36	37-46	47-58	59-79	80+
HRRR	25							
HRRRX	5	25	25					
HiResW ARW	5	5	5	10	10			
HiResW NMMB	5	5	5	10	10			
HiResW Mem2	5	5	5	15	15			
NAMH	10	10	10	15	15	20		
Blend from RH method	45	50	50	50	50	80	100	12 100
	100	100	100	100	100	100	100	100

RH Blend method components (per WFO GGW and CRGMAT)

NWP Weight (%) in forecast hour

	100	100	100	100	100	100	100	100
GFS FV3	5	5	5	10	15	40	60	₁₃ 100
NAML	5	5	5	10	10	15	40	
NAMH	10	15	20	30	35	45		
WRF_MEM2	8	10	10	15	15			
NEMS-NMMB	5	6	6	10	10			
WRF-ARW	7	9	9	15	15			
RAPX	5	5	5	10				
HRRRX	10	40	40					
RAP	5	5						
HRRR	40							
Model	1-16	17-19	20-34	35-37	38-46	47-58	59-82	83,84

Visibility CONUS 10 total inputs: 7 DMO, 3 MOS

NW	Ρ		Weigh	t (%)	in forecast hour							
	1-16	17-34	35-36	37-46	47-58	59-79	80+					
HRRR	15											
HRRRX	5	20										
GMLP-Meld	50	50	50									
HiResW ARW	5	5	5	10								
HiResW NMMB	5	5	5	10								
HiResW Mem2	5	5	5	10								
NAMH	5	5	10	15	25							
GFS FV3	0	0	5	5	10	15	15					
GMOS GFS	5	5	10	25	32	42	42					
GMOS NAML	5	5	10	25	33	43	43					
	100	100	100	100	100	100	100					

Probability of Thunderstorms: 1 hour, 3 hour, and 12 hour

NWP components and expert weights

Probability of Thunderstorm

• Expert Weights Prob Thunder 3, 12

Short-range through 84 hours:

50% SREF (67% currently) - developed by SPC

20% ECMWF MOS

15% GFS MOS (33% currently)

15% NAM MOS

Extended-range after 84 hours: 55% ECMWF MOS 45% GFS MOS (100% currently)

• Expert Weights Prob Thunder 1

1-36 hour:

50% GLMP

50% SREF (100% currently) - developed by SPC

Outline

- NBM Digital Aviation Services products
 NWP components and expert weights
- Techniques and verification
- Example products
 Potential future probabilistic capabili

Techniques and verification issues

- LLWS technique
- Wind speed and gust (URMA vs METAR issue) verification issues

NBM Algorithm for Calculating Low Level Wind Shear (LLWS) Speed, Height, and Direction

1. Leverage the individual model inputs of the U and V components at: Surface, 500 ft (interpolated from Surface and 1000 ft), 1000 ft, 1500 ft (interpolated from Surface and 1000 ft), 2000 ft

2. Calculate the wind speed at each height and determine the wind speed differences between **all** possible layers: (a) [Surface-500 ft], (b) [Surface-1500 ft], (c) [Surface-2000 ft], (d) [500-1000 ft], (e) [500-1500 ft], (f) [500-2000 ft], (g) [1000-1500 ft], (h) [1000-2000 ft], (i) [1500-2000 ft]

3. The models for any particular layer whose wind speed differences are less than 30 knots are ignored in the calculations for (4), (5), and (6).

NBM Algorithm for Calculating Low Level Wind Shear (LLWS) Speed, Height, and Direction

4. Normalize all wind speed shear values (for those models that indicate wind shear at any given level) so that the relative wind speed shear magnitudes between layers with different thicknesses can be compared.

5. Tabulate which model has the greatest wind speed shear for any given layer and assign the wind speed found at the *top* of that layer as the LLWS Speed. The LLWS height is simply assigned to the *top* of this layer.

6. Use that model's U- and V- component (at the **top** of that layer that exhibits the greatest LLWS in (5)) to calculate LLWS direction.

Pronounced bias of NBM versus METARs

- NBM tuned to URMA, not METARs
- URMA has a wind speed low bias versus METARs, and so does NBM
- URMA has a wind gust high bias versus METARs, and so does NBM
- Therefore, the NBM gust factors tend to be higher than what you would normally expect (1.3 for marine, 1.5 to 2.0 for land). NBM are frequently 2.0 to 3.0+

NDFD Projection: Hours before 00Z and 12Z Reference Time

NDFD Projection: Hours before 00Z and 12Z Reference Time

NDFD Projection: Hours before 00Z and 12Z Reference Time

NDFD Projection: Hours before 00Z and 12Z Reference Time

Case study of METAR vs URMA in Phoenix area 00z May 22, 2019

METAR at KPHX 20 knots, URMA 7 knots

50% 10 min

Outline

- NBM Digital Aviation Services products
 NWP components and expert weights
 Techniques and verification
- Example products

Potential future probabilistic capabilities

NBM Text Products

- **1.NBH** (NBM Hourly) to 24 hours (like LAMP)
- 2. NBS (NBM Short Range) to 72 hours (like MET/MAV)
- 3. NBE (NBM Extended Range) to 192 hours (like MEX)
- 4. NBX (NBM Extra-Extended Range) 204-264 hours
- 5. NBP (NBM Probability) to 228 hours

NBH example from KAVX (Catalina Island CA)

KAV)	C 1	NBM	V3.	.21	NBH	GU:	IDAI	ICE		6/(06/:	2019	9 1	1000	9 U	TC									
UTC	11	12	13	14	15	16	17	18	19	20	21	22	23	00	01	02	03	04	05	06	07	08	09	10	11
TMP	54	54	54	55	56	57	59	60	61	62	62	62	61	60	59	57	55	55	55	55	55	55	55	54	54
DPT	53	53	53	54	55	55	56	57	57	57	57	57	57	56	56	56	55	54	54	54	54	54	54	54	53
SKY	81	82	83	82	78	74	71	67	56	44	37	48	52	49	50	54	62	63	65	67	65	66	69	73	75
WDR	33	36	4	5	6	8	9	25	27	26	25	25	25	25	25	25	25	24	23	18	17	14	14	14	14
WSP	1	1	1	1	2	2	2	2	3	3	4	4	4	4	4	3	3	3	2	2	2	1	1	1	2
GST	3	3	3	3	4	4	4	3	4	5	6	6	6	6	5	5	5	4	4	3	3	3	3	3	3
P01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P06								0						1						2					
Q01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DUR														0											
T01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PZR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PSN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PPL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PRA	1001	1001	100:	100:	1001	100:	1001	1001	1001	100:	100:	1001	100:	100:	1001	1001	1001	1001	1001	1001	1001	1001	1001	1001	100
S01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SLV	110	1091	109:	1081	1081	107:	1061	1071	1071	108:	109:	1091	110:	110:	1101	1101	1111	1091	1081	1051	102	99	98	991	100
101	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CIG	2	2	3	3	4	4	21	708	8888	888	8888	8888	8888	8888	8888	888	3	3	3	3	3	3	3	3	3
VIS	10	20	9	20	20	20	40	70	80	40	70	80	80	80	40	30	30	30	30	30	30	20	30	20	20
LCB	2	2	2	2	2	2	3	35	45	26	3	2	2	2	3	1	2	2	2	2	2	2	2	2	2
MHT	10	11	11	11	11	12	12	14	16	16	16	16	15	16	15	15	13	13	12	13	11	11	13	15	15
TWD	7	14	9	13	14	27	28	22	24	26	24	24	24	26	24	23	22	23	22	15	18	15	18	18	18
TWS	2	3	3	2	2	3	3	3	4	5	6	6	6	6	5	4	4	4	4	3	4	4	4	4	4
HID								4						4						4					
SOL	0	0	1	801	1803	330	5006	5908	3609	9009	9108	8306	590	5303	3201	160	50	30	20	20	0	8	0	0	0

NBS example from KSLC (Salt Lake City) UT

KSL	SLC NBM V3.2 NBS GUIDANCE								6/07/2019 0800 UTC														
DT ,	JUNI	E 7	7		/31	JNE	8						/วเ	JNE	9						/JU	JNE	10
UTC	12	15	18	21	00	03	06	09	12	15	18	21	00	03	06	Ø 9	12	15	18	21	00	03	06
FHR	04	07	10	13	16	19	22	25	28	31	34	37	40	43	46	49	52	55	58	61	64	67	70
X/N					80				49				63				44				70		
TMP	62	70	75	76	75	62	55	52	49	53	57	60	61	55	51	47	45	55	63	67	68	62	55
DPT	50	49	47	45	45	44	40	36	34	33	29	27	25	30	33	33	33	32	28	30	32	37	39
SKY	17	11	25	61	71	62	65	57	51	44	11	6	4	7	11	16	30	18	14	7	12	16	18
WDR	15	19	26	30	33	33	34	34	35	34	32	32	33	35	4	5	6	2	34	33	33	35	6
WSP	4	7	10	9	9	13	7	6	4	5	7	8	7	4	4	3	3	3	5	7	7	4	4
GST	9	14	19	18	16	24	16	14	9	10	11	13	12	9	6	6	5	7	9	12	12	7	5
P06			4		14		33		10		6		2		0		0		0		0		0
P12					17				33				6				0				0		
006			0		0		0		0		0		0		0		0		0		0		0
012					0				0				0				0				0		
DUR					0				0				0				0				0		
т03	5	2	4	8	15	9	3	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
T12					20				10				1				0				0		
PZR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PSN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PPL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PRA	100	1001	1001	100:	1001	1001	1001	1001	1001	1001	100:	100:	1001	1001	1001	1001	1001	1001	1001	1001	1001	1001	100
506			0		0		0		0		0		0		0		0		0		0		0
SLV	118:	1121	101	118:	1171	113	81	64	62	63	65	67	68	70	68	65	64	65	73	82	87	89	87
106			0		0		0		0		0		0		0		0		0		0		0
CIG	8888	8888	3882	2202	260	901	100	808	3888	8888	8888	888	8888	8888	8888	8888	3888	8888	8888	8888	8888	8888	888
VIS	170	1402	2002	2502	2702	2002	2002	2202	2201	1301	1301	130:	1301	1101	1101	1201	1201	101	1101	101	101	101	110
LCB	100:	1102	2101	160:	180	70	80	801	100	909	9999	9999	9999	999	902	2302	2002	2309	9999	9992	2402	2402	210
MHT	5	18	50	49	44	28	30	15	17	51	71	69	56	5	5	5	5	30	52	47	30	5	5
TWD	17	18	22	23	28	33	34	36	36	34	32	28	32	36	2	4	1	36	36	35	35	2	8
TWS	7	10	16	14	11	21	12	8	6	10	9	9	10	6	5	6	6	7	8	8	8	4	5
HID			4		6		4		3		3		4		4		4		4		5		5
SOL	204	4408	3808	340	500	40	4	0	204	4308	3909	998	5802	220	50	0	502	2206	5909	9986	5902	220	50

Ceiling SoCal 18z Sunday May 26, 2019

Lowest Cloud Base: v3.1 vs v3.2 21z (18 hour forecast) Jun 5, 2019

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

Visibility NrnCal 12z Sunday May 19, 2019

NBM 30 hour

GLMP

Echo Tops/Max Hourly Reflectivity 12z Sunday May 19, 2019

Wind 10-m, 30-m, 80-m wind speed 24 hour forecast 00z Wednesday May 22, 2019

Wind Gust 00z Wednesday May 22, 2019

NBM Home Page

- <u>https://www.weather.gov/mdl/nbm_home</u>
- https://blend.mdl.nws.noaa.gov/

Outline

- NBM Digital Aviation Services products
- NWP components and expert weights
- Techniques and verification
- Example products
- Potential future probabilistic capabilities

Probabilistic Aviation Forecasts

- Probability of VLIFR, LIFR, IFR, MVFR:
 - Ceiling
 - Visibility
 - Combined
- Probability of exceedance for wind speeds and wind gusts
- Probability of runway usage based on wind speed and direction
- Probability of LLWS, Icing, turbulence

Thanks for your kind attention!

<u>Jeffrey.Craven@noaa.gov</u> <u>David.Rudack@noaa.gov</u> <u>Robert.James@noaa.gov</u>

