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1.0 Introduction 

Operational hydrologic forecast models simulate the physical rainfall-runoff processes that 
underlay watershed outflow.  Most watersheds, however, include storage and other 
distributed regulation facilities that modify the natural flow regime and introduce forecast 
discrepancies.  In watersheds with large reservoirs or sizable known basin withdrawals and 
transfers, this problem can best be addressed by explicit modeling of the regulation process.  
In watersheds where regulation is the cumulative effect of small but many individual 
facilities, however, explicit regulation modeling is not practical.  The purpose of the 
“Upstream Regulation” project is to develop and test procedures that (1) can incorporate the 
second type of watershed regulation in operational hydrologic forecasts, and (2) quantify the 
associated uncertainty.  Quantifying the associated uncertainty enables reliable risk 
assessments, but it also provides the information to answer the question, “What approach 
should be used at a particular watershed: pure hydrologic modeling, explicit upstream 
regulation modeling, or implicit upstream regulation modeling?”  Clearly, the answer to this 
question depends on whether the uncertainty size associated with each approach is 
operationally adequate.           

The work reported herein investigates the potential to incorporate upstream regulation 
through the use of (1) Neural Networks or (2) Linear Regression models.  These methods are 
investigated first because they can represent linear and nonlinear relationships, are robust 
and simple to implement, and can easily be packaged as part of operational forecasts.  The 
methods are developed and tested for three watersheds of the American River at daily, 
weekly, and monthly time resolutions, and yield promising results.  However, detailed 
assessments are continuing to determine the methods’ operational adequacy and the need to 
consider other approaches.     

This report includes 7 sections and two appendices.  In Section 2, the three case study 
watersheds are briefly described including the available data and the origin of the hydrologic 
model simulations used in this work.  Section 3 elaborates on the technical details of the 
methods used.  Sections 4 and 5 discuss model calibration and testing, and Section 6 
summarizes the important findings and continuing investigations.  References are included in 
Section 7.  Appendices A and B include tables and figures with additional details on 
calibration parameters and verification results.    

2.0 Case Study Watersheds and Hydrologic Forecasts 

The three forks (North, Middle and South Fork) of the American River drain approximately 
4,800 km2 of the mountainous terrain of central California (with elevations up to 3,000 m) and 
join to provide inflow to Folsom Lake (Figure 1). The catchment with outlet at Folsom Lake is 
characterized by typical orographic rainfall patterns associated with steep terrain barriers, and 
with snow in the high elevations (typically above 1500 m).  The climatological means of hourly 
precipitation, based on a sample of precipitation events for the wet period 1980-1987, show a 
maximum of about 2 mm/hr over the headwaters of the North Fork of the American River with 
pronounced variability.  The automated operational gauge network provides estimates of the 
mean areal precipitation that are nearly unbiased for the entire inflow watershed, but which 
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possess non-negligible bias for the Fork sub-catchments (Tsintikidis et al. 2002).  The catchment 
average response time to significant rainfall events in the absence of snow is approximately 12 
hours.  Of particular interest for this work is the fact that significant and diverse upstream 
regulation is documented for the Middle and South Forks of the American River.  Available data 
from the operational files of the California Nevada River Forecast Center (CNRFC) of the U.S. 
National Weather Service consist of: six-hourly mean areal precipitation and temperature for 
sub-catchments of the basin, monthly climatologies of daily potential evapotranspiration demand 
for each sub-catchment, and observed mean daily streamflow for all the Forks and reconstructed 
Folsom Lake inflow from Lake levels.  
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Figure 1: Folsom Lake catchment and the sub-catchments of the North, Middle and South Forks 
of the American River. 

 
 
The hydrologic model used in this study to generate flow simulations and forecasts contains 
important features of the CNRFC operational hydrologic model, including the components for 
snow accumulation and ablation, soil water accounting, and channel routing.  These components 
of the stand alone hydrologic model were designed and implemented to mirror the analogous 
components of the operational CNRFC forecast model.  It is an adaptation of the operational 
model as it includes distributed channel routing in order to more accurately reproduce the timing 
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of the flows throughout the stream network.  The model consists of adaptations of the operational 
snow accumulation and ablation model (Anderson 1973) and the Sacramento soil water 
accounting model as described in Georgakakos (1986).  For channel routing, the kinematic 
channel routing model of Georgakakos and Bras (1982) is used in the form of a sequence of 
linear conceptual reservoirs, with parameters estimated from the CNRFC estimates of unit 
hydrographs applied to the sub-catchments of interest (see Sperfslage and Georgakakos 1996 for 
a description of the procedure).   
 
The hydrologic basin upstream of the Folsom Lake reservoir was subdivided into sub-basins 
considering stream gauge sites, significant upstream reservoir facilities, available automated 
precipitation and temperature sensors, and the topology of the channel network.  Those sub-
basins, which have significant elevation differences within their areas, are further subdivided into 
sub-areas (an upper and a lower sub-area in this version of the stand alone model).  The snow 
and the soil-water models are applied to each of the sub-areas to produce rain plus melt and 
channel inflow volumes, respectively.  These volumes are then fed into the channel routing 
model and are carried downstream through the channel network undergoing time distribution, 
advection and attenuation.  The model produces outflow at all the gauging sites and all the 
junctions of the model-channel network, and, of course, at the basin outlet (inflow point into the 
reservoir).  It is important to note that the stand-alone model is designed to use the same input as 
the operational hydrologic forecast model, and its parameters bear close relationship to the 
parameters of the operational hydrologic model.  The values of the model parameters used by the 
operational model for the snow and soil-water components were used in the stand alone model as 
well, while (as mentioned earlier) a calibration process with available data was used to determine 
parameters for the channel routing model. 
 
The configuration of the stand-alone model elements is exemplified for the Folsom Lake 
drainage in Figure 2.  The North (NF), Middle (MF) and South (SF) Fork sub-basins are shown, 
sub-divided into an upper and a lower sub-area for snow-pack, soil-water accounting and channel 
routing.  Channel routing occurs in each sub-area of each sub-basin and at channel network 
junctions the inflows are summed.  Channel routing is indicated with red arrows in the Figure.  
There are four streamflow observation sites in the basin, shown with black filled circles.  Of 
these, the one corresponding to the inflow point to Folsom Lake reports lake levels, which are 
transformed to naturalized flows.  The model used also performs channel routing to the junctions 
without observations (open circles) to allow for the correct reproduction of the observed 
hydrograph with a six-hour temporal resolution.   
 
The kinematic channel routing component of the stand alone model for each channel segment is 
based on a series of linear reservoirs with identical parameters.  The sum of the inverse of the 
channel routing model parameters for all the reservoirs representing a single channel segment is 
equal to the travel time in the channel segment.  The operational model uses unit hydrographs to 
reproduce channel processes.  For the North, Middle and South Fork sub-basins, initial estimates 
of the parameters of the channel routing component of the stand-alone model were obtained by 
fitting the linear reservoir model to the appropriate unit hydrographs (e.g., see Sperfslage and 
Georgakakos 1996 for numerical fitting procedure).  Initial values of the parameters of the 
channel segments downstream of the Forks were based on preliminary estimates of the travel 
time in these segments based on drainage area size.  Table 1 shows the parameter values of the 
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snow, soil and channel components of the stand alone hydrologic model for the Folsom Lake 
drainage sub-basins.  The nomenclature of Table 2 is used.  Table 3 shows the long-term-
averaged daily values of evapotranspiration demand by month (adopted from the operational 
parametric input files of CNRFC) used by the model for the present numerical experiments. 
 
 
 
 

 
Figure 2:  Representation of Folsom Lake drainage by the hydrologic prediction model.  Sub-
basins for which snow-pack and soil-water accounting is done are shown in yellow shade with 
sub-divisions into upper and lower sub-areas as appropriate.  Routing segments are shown with 
red arrows, while junctions are shown with circles (filled black circles indicate gauged sites). 
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______________________________________________________________________________________ 
 
Table 1: Nominal Values of Stand Alone Model Parameters* 

 
SNOW PARAMETERS 
 
 NFu NFl MFu MFl SFu SFl FL 
SCA 1.0 1.0 1.35 1.0 1.2 1.0 1.0 
MFMAX 0.86 0.85 0.69 0.5 0.75 0.85 0.8 
MFMIN 0.2 0.3 0.12 0.16 0.2 0.25 0.25 
NMF 0.15 0.15 0.15 0.15 0.15 0.15 0.15 
PLWHC 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
TIPM 0.25 0.25 0.25 0.25 0.25 0.25 0.25 
MBASE 1.0 1.0 1.0 1.0 1.0 1.0 0.0 
UADJ 0.04 0.04 0.04 0.04 0.08 0.06 0.04 
DAYGM 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
PXTEMP 2.0 2.0 2.0 2.0 2.0 2.0 1.0 
SI 900. 300. 1200. 600. 1100. 500. 200. 
ELV 19.86 9.60 19.81 13.72 20.29 5.90 4.57 
PADJ 1.0 1.0 1.0 1.0 1.1 1.05 0.97 
 
 
SACRAMENTO MODEL PARAMETERS 
 
     NFu         NFl      MFu   MFl       SFu    SFl          Fl 
UZTWM    142.000     161.000      90.000     140.000     100.000     175.000      75.000 
UZFWM     55.000      35.000      35.000      45.000      65.000      90.000      15.000 
LZTWM    312.000     360.000     270.000     280.000     250.000     600.000     180.000 
LZFPM     72.000      72.000      96.000     110.000     125.000     350.000     100.000 
LZFSM    110.000      85.000     120.000     110.000      20.000      60.000      80.000 
DU         0.075       0.070       0.105       0.115       0.040       0.050       0.062 
DLPR       0.001       0.002       0.001       0.002       0.001       0.001       0.001 
DLDPR      0.018       0.030       0.023       0.015       0.007       0.007       0.018 
EPS       20.000      20.000      48.000      43.000      30.000     100.000      12.000 
THSM       1.400       1.400       1.300       1.500       2.100       1.100       1.200 
PF         0.250       0.350       0.150       0.300       0.250       0.250       0.250 
XMIOU      0.000       0.000       0.000       0.000       0.000       0.000       0.100 
ADIMP      0.010       0.010       0.000       0.020       0.000       0.000       0.075 
PCTIM      0.000       0.000       0.005       0.005       0.000       0.000       0.065 
ETADJ      1.000       1.000       1.000       1.000       1.000       1.000       1.000 
 
 
KINEMATIC CHANNEL ROUTING MODEL INITIAL PARAMETERS 
 
 NFu  NFl     MFu   MFl    SFu     SFl    MF-NF   MF/NF-F  SF-F 
nc        1       2       1     2      3       1        2   2         2                                 
α     5.40 0.85 4.40     0.95   4.40    0.80      4.0      4.0  0.95   
  
SUB-CATCHMENT AREAS (km2) 
 
  NFu  NFl  MFu  MFl  SFu  SFl  Fl 
Area 325.1 550.4 713.0 533.5 898.6 632.3 1016.3 
 
_________________________________________________________________________________________ 
*See Table 2 for nomenclature used in this Table
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______________________________________________________________________________________ 
 
Table 2: Nomenclature for Table 1 
 
HEADINGS 
 
For Snow, Sacramento Models, Channel Routing Model and for Areas 
NFu: NORTH FORK UPPER SUB-AREA 
NFl: NORTH FORK LOWER SUB-AREA 
MFu: MIDDLE FORK UPPER SUB-AREA 
MFl: MIDDLE FORK LOWER SUB-AREA 
SFu: SOUTH FORK UPPER SUB-AREA 
SFl: SOUTH FORK LOWER SUB-AREA 
Fl: FOLSOM LAKE LOCAL SUB-BASIN 
 
For Channel Routing Model  
MF-NF: CHANNEL SEGMENT CONNECTING THE OUTLET OF MIDDLE FORK WITH A JUNCTION POINT  
 DOWNSTREAM OF THE NORTH FORK OUTLET 
NF/MF-F: CHANNEL SEGMENT THAT CONNECTS THE JUNCTION POINT DOWNSTREAM OF NORTH FORK  
 OUTLET WITH FOLSOM LAKE INFLOW POINT 
SF-F: CHANNEL SEGMENT THAT CONNECTS THE OUTLET OF SOUTH FORK WITH FOLSOM LAKE INFLOW  
 POINT 
 
 
SNOW MODEL PARAMETERS 
 
SCA: SNOW CATCH ADJUSTMENT FACTOR 
MFMAX: MAXIMUM MELT FACTOR (MM DEGC-1 D-1) 
MFMIN: MINIMUM MELT FACTOR (MM DEGC-1 D-1) 
NMF: MAXIMUM NEGATIVE MELT FACTOR (MME DEGC-1 D-1) 
PLWHC: FRACTION OF SNOW COVER FOR WATER HOLDING SNOW CAPACITY 
TIPM: PARAMETER FOR ANTECEDENT TEMPERATURE INDEX COMPUTATIONS 
MBASE:   BASE TEMPERATURE FOR MELT COMPUTATIONS (DEGC) 
UADJ:   AVERAGE DAILY WIND FUNCTION FOR RAIN-ON-SNOW PERIODS (MM MB-1 DAY-1) 
DAYGM:   CONSTANT MELT AT SNOW-SOIL INTERFACE (MM DAY-1) 
PXTEMP:   TEMPERATURE TO DELINEATE RAIN FROM SNOW (DEGC) 
SI:   MAXIMUM SWE FOR 100% COVER IN SNOW DEPLETION CURVE (MM) 
ELV: ELEVATION OF CENTROID OF BASIN (102 M) 
PADJ: PRECIPITATION ADJUSTMENT FACTOR 
 
 
SACRAMENTO MODEL PARAMETERS 
 
UZTWM: UPPER ZONE TENSION WATER CAPACITY (MM) 
UZFWM: UPPER ZONE FREE WATER CAPACITY (MM) 
LZTWM: LOWER ZONE TENSION WATER CAPACITY (MM) 
LZFPM: LOWER ZONE FREE PRIMARY WATER CAPACITY (MM) 
LZFSM: LOWER ZONE FREE SUPPLEMENTARY WATER CAPACITY (MM) 
DU: INTERFLOW RECESSION (6HRS-1) 
DLPR: RECESSION COEFFICIENT FOR LOWER ZONE FREE PRIMARY WATER ELEMENT (6HRS-1) 
DLDPR: RECESSION COEFFICIENT FOR LOWER ZONE FREE SUPPLEMENTARY WATER ELEMENT (6HRS-1) 
EPS:  CONSTANT FACTOR IN PERCOLATION FUNCTION 
THSM: EXPONENT IN PERCOLATIOIN FUNCTION 
PF: FRACTION OF PERCOLATION BYPASSING THE LOWER ZONE TENSION WATER ELEMENT 
XMIOU: FRACTION OF WATER LOST TO DEEP GROUNDWATER LAYERS 
ADIMP: ADDITIONAL IMPERVIOUS AREA MAXIMUM FRACTION 
PCTIM: FRACTION OF PERMANENTLY IMPERVIOUS AREA 
ETADJ: EVAPOTRANSPIRATION DEMAND ANNUAL ADJUSTMENT FACTOR 
 
CHANNEL MODEL PARAMETERS 
 
nc: NUMBER OF LINEAR RESERVOIRS REPRESENTING THE CHANNEL SEGMENT UNDER STUDY  
α: COMMON COEFFICIENT OF LINEAR RESERVOIRS WITH INVERSE DESCRIBING TRAVEL TIME  (6HRS-1) 
__________________________________________________________________________________________________________  
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_____________________________________________________________________________________ 
Table 3: Daily Values of Evapotranspiration Demand Used by the Sacramento Model for Each Month 
      (Values in mm/d) 
 
   NFu       NFl    MFu         MFl      SFu   SFl       Fl 
J       0.760       1.280       0.760       1.280       0.780       1.300       0.860 
F       0.780       1.400       1.060       1.860       1.450       2.470       1.120 
M       0.820       1.800       1.470       2.520       1.670       2.940       1.640 
A       1.030       2.290       1.950       3.110       1.800       3.200       2.480 
M       1.800       3.640       2.550       4.110       2.280       3.850       4.150 
J       3.040       6.040       4.320       6.330       3.580       7.390       4.560 
J       5.260       8.220       5.400       8.650       5.760       9.160       4.640 
A       5.570       8.250       6.150       9.730       5.840       8.760       4.100 
S       4.100       6.550       4.770       6.950       3.270       3.790       3.220 
O       1.940       3.100       2.690       3.120       1.810       2.300       2.200 
N       1.140       1.690       1.190       1.440       1.360       2.050       1.230 
D       0.910       1.400       0.940       1.250       1.080       1.800       0.880 

      

3.0 Implicit Upstream Regulation Methods 

3.1 Artificial Neural Networks  

Artificial neural network models were first introduced in the field of speech and image 
recognition to mimic human-like brain functions. These models are composed of many 
nonlinear computational elements operating in parallel and arranged in patterns resembling 
biological neural nets.  Computational elements or nodes are connected via weights that are 
adapted with use to improve performance.  Neural networks have found applications in many 
fields for learning to simulate various input-output processes from sets of observed data.   

A neural network consists of two basic elements: nodes and arcs connecting different nodes.  
A real number called weight is usually assigned to each arc.  The weight wij specifies the 
strength of information that node i receives from node j.  Each node (also called processing 
unit) receives information from other nodes or externally, and produces an output after 
passing all its inputs through an activation function associated with it.  A node receiving 
input from outside is called input node.  A node is called output node if its output is one of 
the network outputs; otherwise, it is called a hidden node. 

Various configurations and layouts of neural networks have been constructed for solving 
particular problems.  The layered feedforward network is used widely and is easy to 
implement.  In this work, it is used as the basic neural network structure.  The layered 
feedforward network arranges its nodes into different layers.  The bottom layer contains the 
input nodes. The top layer contains the output nodes. All nodes in the middle layers are 
hidden nodes.  Connections exist only between nodes of adjacent layers.  The input nodes 
receive external information and pass it on to the nodes of the first hidden layer through the 
weighed arcs which, in turn, propagate it further up until it reaches the nodes of the output 
(top) layer.  In the layered feedforward network, the information propagates from the bottom 
to the top. A typical layered feedforward network is depicted in Figure 3. 
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Figure 3: Typical Layered Feedforward Neural Network 

A network with fixed weights and activation functions determines a relationship between 
inputs and outputs.  This relationship can be simple or complicated depending on the network 
structure and the activation function forms.  For a layered feedforward network, the 
activation functions play a crucial role in identifying the correct relations.  In this respect, 
sigmoidal functions have been shown to perform very well as activation functions.  
Sigmoidal functions tend to 1 at positive infinity and 0 at negative infinity.  It has been 
shown that any continuous function can be uniformly approximated by continuous sigmoidal 
functions.  Other functions such as the hard limiter, threshold logic, and sigma-pi have also 
been used successfully in many fields.  In this work, however, the sigmoidal function will be 
the basis of the activation NN function.   

For a given neural network structure, the parameter estimation problem consists of 
determining the weights such that the network can best derive the input-output data 
relationship.  This process is called “training” and uses measured input-output data pairs to 
find the "optimal weights".  The training process begins with some initial weight estimates 
which are used to produce an output to certain inputs.  This output is subsequently compared 
with the desired output of the training data set and the weights are adjusted to minimize the 
discrepancy.  This procedure is repeated many times until weight convergence, and it can be 
fast or slow depending on the method used for weight adjustment. Many weight updating 
rules exist, including the Delta rule with weight updating after each input-output pair which 
has proved to be simple to implement and efficient with respect to convergence rate and 
computational requirements. 

The Delta rule essentially implements a gradient descent procedure.  The objective function 
for the training process is 

,)O-t(  
2
1=E 2

pjpj

M

j

N

p
∑∑Min  
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where N is the number of training data pairs, M is the output node number, tpj is the desired 
value of the jth output node for input pattern p, and Opj is the jth element of the actual output 
associated with input p.  Every node except the input nodes on the first layer receives data 
from the nodes of previous layers. The total received by input node j is called the net of node 
j and is denoted by netpj: 

,OW=net piji
i

pj ∑  

where Wji is the weight from node i of the previous layer to node j.  Thus, the output of node 
j is given by: 

.)net(f=O pjjpj  

The weight adjustment is based on the Delta rule after presenting each data pair, and it is 
given by: 

,O=W pipjjip δηΔ  

where η is called the learning rate, taking values between 0 and 1, and δpj is called the error 
term of node j and is given by: 

( ) ( )
( ) ⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡ −
= ∑

k
kjpkpjj

pjjpjpj

pj otherwiseWnetf
nodeoutputanisjifnetfOt

δδ /
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 . 

The learning process involves two phases: During the first phase, the input is presented and 
propagated forward through the network to compute the output value Opj.  This output is then 
compared with the desired value tpj, resulting in an error εpj for each output node.  The 
second phase involves a backward pass through the network during which the error is passed 
to each node and the appropriate weight changes are made.  

The above weight updating rule is called the generalized Delta rule for the multilayer 
feedforward network.  The larger the learning rate is, the larger are the changes of the 
weights.   

3.2 Regression Models  

Linear regression models are used in this work as a more parsimonious alternative to the NN 
models, and are developed using the same input data.   

4.0 Model Calibration and Testing 

4.1 Neural Network (NN) Models 

The NN model is used to establish the relationship between the unimpaired flow forecasts (of 
the hydrologic model) and the observed (regulated) flows.  NN models are developed for the 
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North, Middle, and South Fork watersheds, draining into the Folsom reservoir on the 
American river.  Flow measurements are available at the exit of each watershed.  Several 
small storage reservoirs exist in the Middle and South Fork watersheds, while the North Fork 
watershed is largely undeveloped. 

The daily sequences of observed and simulated flows at each site are plotted in the Figures of 
Appendix B.  The flow correspondence is generally good.  The two sequences follow similar 
patterns and are correlated well. The error statistics and correlation coefficients at different 
time resolutions are summarized in Table 4.  The Middle Fork watershed is subsequently 
used as a test-bed for additional tests and its results are reported first.      

Table 4: Hydrologic Model Statistics  

Error Mean (cfs) Error StD (cfs) Correlation Coef
Middle Fork -105.41 1096.74 0.87
North Fork 23.64 521.40 0.96
South Fork 252.29 1144.36 0.82

Middle Fork -105.40 930.41 0.86
North Fork 23.64 360.28 0.98
South Fork 252.67 940.70 0.84

Middle Fork -104.95 783.84 0.84
North Fork 23.31 240.26 0.98
South Fork 253.47 728.34 0.86

Weekly

Monthly

Daily

 

The development of the NN models proceeds as follows:  The data record of each site is 
divided into three segments used for NN training (first 50% of the record), calibration 
(middle 30% of the record), and validation (last 20% of the record).  The training segment is 
used to train the NN model parameters. After each training cycle, the NN model is applied to 
the calibration data set, and the error statistics are computed.  The NN training process is 
stopped when the simulation error in the calibration data set is minimized.  The validation 
data set is used to assess the NN performance for data that have not been used in the NN 
development.    

The activation function used for each node is  

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− ∑ θ jpiji

i

pjjpj

+exp+1

1 = )net(f = O

OW
 

where θj is a bias associated with node j and is learned (estimated) as all other NN weights.  
The sigmoidal function is continuous and differentiable everywhere.   

The output range of the activation function is between zero and one.  However, flows are not 
necessarily within this range. Thus, to utilize this function, appropriate data preprocessing is 
required. To satisfy the requirement, the following linear transformation is used to bring the 
data into the zero-one range: 
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max min

max min max min

Q Q Q QQ A B
Q Q Q Q

− −′ = +
− −

 . 

The above expression is a general linear transformation in which Q is the original flow value, 
Q' is the transformed value, Qmax, Qmin are the maximum and minimum values of the entire 
series, and A and B are the lower and upper bounds after the transformation.  It is noted that 
the activation function cannot take the values 1 and 0 without infinitely large weights, 
implying that the network will never produce Qmax and Qmin. One way to resolve this problem 
is to let A be higher than 0 and B lower than 1.  A and B are part of NN model parameters.  
The NN model output should be transferred back to the original scale using the inverse 
transformation.   

Several NN structures were tested in this study against several criteria to be presented later in 
the section.  A structure with five input nodes and one hidden layer with five hidden nodes 
was found to perform best for all sites at daily and weekly time resolutions, while a simpler 
NN structure is more suitable at the monthly time resolution because of limited data 
availability.  In what follows, this NN structure is used for all time resolutions to assess the 
forecast improvements at the daily and weekly time scales and highlight the dependence of 
NN performance to data availability at the monthly time scale.  

The NN input nodes consist of three previous observed flows, O(k-1), O(k-2), and O(k-3); 
the current unimpaired flow forecast, I(k); and the previous unimpaired flow forecast, I(k-1).  
Here k represents the current time period.  The optimal NN structure is shown below:  

O(k-1) O(k-2) O(k-3) I(k) I(k-1)

O(k)

1,21,1 1,3 1,4 1,5

2,1 2,2 2,3 2,4 2,5

3,1

W(1,2)

W(2,3)

 

Figure 4: Optimal NN Structure 

 

The training process requires 2,000 to 6,000 iterations to converge for all NN models.  These 
computations take less than a minute on a ThinkPad T61 notebook computer.  When training 
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is complete, the optimal model parameters are saved (Tables A.1 through A.9 in Appendix 
A).  Simulations are then carried out using the optimal NN models to assess their 
performance.  Error statistics (mean and standard deviation) and correlation coefficients 
between observed and modeled flows are computed separately for the training, calibration, 
and validation data sets.  These results are reported in Tables 5, 6, and 7 for the daily, weekly, 
and monthly time resolutions respectively.  For comparison, these tables also include the 
same statistics for the hydrologic forecasts and the regression models.  Error statistics were 
developed for many alternative model forms, both NN and regression type.  The models 
described herein are selected based on their performance against the above-mentioned 
statistics.       

The NN models show significant improvement over the original hydrologic forecasts as 
indicated by the higher correlations between observed and simulated data and the smaller 
error standard deviations. 

For the Middle Fork watershed at daily resolution, compared to the hydrologic model 
forecasts, the NN results generally exhibit smaller bias, smaller error standard deviation, and 
higher correlation with observed data.  More specifically, the calibration and validation 
period biases of the hydrologic model are reduced from -87 and -198 cfs respectively to -59 
and -25 cfs; the calibration and validation period error standard deviations are reduced from 
1067 and 1051 cfs respectively to 791 and 659 cfs (a 30 to 40% reduction); and the 
calibration and validation correlation coefficients with observed data are increased from 0.89 
and 0.92 respectively to 0.94 and 0.96.  Similar results (a 33% standard deviation reduction) 
are obtained for the weekly time resolution, while the monthly improvements are marginal 
(Table 6 and 7).  The relative decline of the NN performance at the monthly time scale is due 
to limited data availability introducing biases in the NN parameters.  In this regard, the NN 
models can achieve better performance by using a simpler network structure, as discussed 
below.                   

For the largely undeveloped North Fork watershed, the hydrologic model forecasts are 
substantially better than those for the other two watersheds, and the use of the NN model 
yields small forecast improvements.  

Lastly, for the South Fork watershed, the NN forecast improvements (over the hydrologic 
model performance) are comparable to those of the Middle Fork watershed for the daily and 
weekly time resolutions. The performance at the monthly time scale is not as good, 
highlighting the need for a simpler NN structure with fewer parameters.  In this respect, 
based on the results reported herein, it is recommended that the number of data points per 
NN parameter in the training data set be higher than 20 to 25.  This is the number of data 
points corresponding to the weekly NN implementation, while the monthly NN 
implementation only affords five data points per parameter.              

The time series comparisons between the observed and simulated data are plotted in Figures 
B.1 through B.12 in Appendix B.  
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4.2 Regression Models 

The following linear regression model form was found to perform best for all sites and time 
resolutions: 

654321 )1()()3()2()1()( AkIAkIAkOAkOAkOAkO +−++−+−+−=  , 

where k is the time index, O is the output variable (observed flow), I is the input variable 
(unimpaired flow forecast from the hydrologic model), and Ai , i=1, 2, …, 6, are regression 
coefficients.  

For consistency with the NN model calibration process, the regression parameters are 
estimated using the training data set (Table A.10 in Appendix A). The model is then applied 
to the calibration and validation data sets to assess its error characteristics. These statistics 
are listed in Tables 5, 6, and 7, and the corresponding sequences are plotted in Figures B.13 
through B.21 in Appendix B.  

For the Middle and South Fork watersheds, the regression models show significant 
improvements over the hydrologic model in terms of zero biases, smaller error standard 
deviations, and higher correlation coefficients with observed data.  As in the NN models, the 
forecast improvements for the North Fork watershed are small.  The overall performance of 
the regression models (with respect to the stated criteria) is comparable and occasionally 
slightly better than that of the NN models.  The next section investigates these performance 
gains and differences in more detail and clarifies from where they accrue.      

5.0 Performance Analysis by Flow Range 

The performance comparisons of the previous section are based on error bias, error standard 
deviation, and correlation coefficient between forecasted and observed data over the entire 
data range.  However, upstream regulation is expected to exert different flow impacts on 
different ranges of the flow frequency distribution, with such impacts expected to be more 
pronounced in medium to low flows than in high flows.  Thus, to determine which model 
performs best, it is useful to quantify model performance over different distribution ranges.   

Toward this goal, the Middle Fork watershed results are re-analyzed over three different flow 
ranges corresponding to the lower quartile, the middle half, and the upper quartile of the 
observed frequency distribution.  For the training data set, the corresponding flow ranges are 
35 to 330 cfs, 331 to 1340 cfs, and 1341 to 65000 cfs respectively.   The flow ranges for the 
calibration and validation data sets are similar.  

Performance statistics are computed as in the previous section for each frequency distribution 
range, and comparative data plots are generated separately for the training, calibration, and 
validation data sets. In addition, the range frequency distributions of the observed data, 
hydrologic model forecasts, NN model forecasts, and regression model forecasts are also 
plotted.  All tables and figures are included in Appendix C.  A summary of the results is 
compiled on Table 8.   
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Examination of the validation period results reveal significant model performance 
differences noted below.  

• As expected, the hydrologic model performs best in the upper frequency quartile, where 
natural, unimpaired flow conditions dominate.  In that range, its correlation coefficient 
with the observed flows is 0.92.  Its performance, however, declines considerably in the 
other two frequency ranges with the correlation coefficient dropping to 0.46 and 0.41 
respectively in the middle half and the lower frequency quartile.  This is clearly observed 
in Figure C.3.2 (middle half), where the impact of flow regulation in smoothing out the 
natural inflow hydrographs is evident.  The same comment applies for the lower quartile 
(dry conditions), although some performance improvement is noted during very dry and 
extended periods (with flows less than 200 cfs), where upstream storage is totally 
depleted.  These observations are corroborated by the frequency distribution graphs 
where frequency distribution discrepancies between hydrologic model forecasts and 
observed flows are seen clearly.   

• After post-processing by the NN or the regression models, the hydrologic forecasts 
correspond considerably better with the observed flows for all frequency ranges.  The 
most notable improvement occurs with post-processing using the NN approach for the 
middle half frequency range.  There, the correlation coefficient of the original hydrologic 
model forecasts increases from 0.46 to 0.84, the error standard deviation decreases from 
584 cfs to 147 cfs, and the error bias decreases from 119 cfs to -24 cfs.  Improvements 
are also noted using the regression model, but they are clearly inferior to those of the NN. 
This is seen on Figure C.3.2 where (1) the regression results experience frequent 
downward departures from the observed flows, and (2) the NN frequency distribution 
corresponds exceptionally well with that of the observed flows.  Figure C.3.1 indicates 
that the regression model discrepancies increase in the lower quartile, with the NN 
maintaining better correspondence with the observed flows.                              

This analysis shows that the NN performs better than the regression model, more so than the 
assessment of Section 4 initially indicated.  The reason for this is attributed to the NN ability 
to represent the nonlinear response that characterizes the flow modification in different flow 
frequency ranges.  This ability of the NN approach resides in its nonlinear activation 
functions and larger parameter set.  In this respect, the regression approach may improve if 
different regression models are calibrated for different frequency ranges.  This and other 
possible improvements are currently being investigated.       

6.0 Conclusions 

The purpose of this study is to develop mathematical models to correct for upstream 
regulation impacts on hydrologic flow forecasts.  The models investigated here are based on 
neural networks and linear multiple regression.  These methods are investigated first because 
they can represent linear and nonlinear relationships, are robust and simple to implement, 
and can easily be packaged as part of operational forecasts.  The models were developed and 
tested for three watersheds in the American River and were shown to realize significant 
advances toward estimating observed flows from unimpaired model-simulated flows in 
streams with upstream regulation.  Detailed comparative analyses of model performance 
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demonstrated that the NN approach is able to represent the nonlinear flow modification more 
effectively across high, medium, and low flow frequency ranges, albeit at the expense of a 
larger parameter set.      

In the next project phase, the NN and regression models will be refined further and tested in 
multi-lead forecasts.  Improvements are expected if separate regression models are generated 
for different flow ranges, and if simpler NN structures are identified at the monthly time 
resolution where data availability is relatively limited. NN and regression model 
modifications designed to generate a better match across the entire frequency range will also 
be tested.  With respect to multi-lead forecasts, the NN and regression models will be tested 
against several criteria to quantify their bias, accuracy, and reliability properties.  As part of 
this investigation, procedures to characterize forecast uncertainty through forecast ensembles 
will also be developed.     

Other, more physically based methods to incorporate upstream regulation may also be 
researched if the NN and regression models proved to be inadequate.   
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Table 5: Daily Error Statistics 

Site Stats

Date Interval

Data Points

Hydro Model NN 
Model

Reg 
Model

Hydro 
Model

NN 
Model

Reg 
Model Hydro Model NN 

Model
Reg 

Model
Error Mean -76.65 -91.30 0.00 -87.36 -59.09 8.17 -198.06 -25.99 -5.16
Error StDev 1134.55 481.40 636.89 1066.95 791.56 595.99 1051.20 658.99 629.38
Corr. Coef 0.81 0.97 0.94 0.89 0.94 0.96 0.92 0.96 0.96

Date Interval
Data Points

Hydro Model NN 
Model

Reg 
Model

Hydro 
Model

NN 
Model

Reg 
Model Hydro Model NN 

Model
Reg 

Model
Error Mean 40.66 -24.53 -0.01 20.38 -32.22 -10.70 -18.73 -43.97 -29.37
Error StDev 402.64 305.13 302.06 601.59 539.59 501.13 640.84 594.80 539.66
Corr. Coef 0.97 0.98 0.98 0.96 0.97 0.97 0.95 0.96 0.97

Date Interval

Data Points

Hydro Model NN 
Model

Reg 
Model

Hydro 
Model

NN 
Model

Reg 
Model Hydro Model NN 

Model
Reg 

Model
Error Mean 279.71 -111.42 0.00 201.50 -121.73 -9.24 248.16 -102.20 32.76
Error StDev 1105.60 481.58 546.84 1063.01 476.78 468.02 1343.38 935.59 604.31
Corr. Coef 0.75 0.94 0.92 0.83 0.97 0.96 0.88 0.92 0.96

6400 3840 2560

Validation Period

North Fork

10/1/1960-11/30/1979 12/1/1979-5/31/1991 6/1/1991-1/29/1999
7000 4200 2800

Model Training Period

10/1/1960-11/30/1979

7000 4200

12/1/1979-5/31/1991

Calibration Period

South Fork

8/1/1964-2/7/1982 2/8/1984-8/13/1992 8/14/1992-8/17/1999

Middle Fork

2800

6/1/1991-1/29/1999

 
 
 

Table 6: Weekly Error Statistics 
Site Stats

Date Interval

Data Points

Hydro Model NN 
Model

Reg 
Model

Hydro 
Model

NN 
Model

Reg 
Model Hydro Model NN 

Model
Reg 

Model
Error Mean -76.67 -33.39 0.00 -87.09 49.06 15.43 -200.54 23.32 4.43
Error StDev 971.70 374.07 610.99 899.19 610.91 631.29 876.96 587.26 590.67
Corr. Coef 0.79 0.96 0.90 0.89 0.96 0.94 0.92 0.96 0.95

Date Interval
Data Points

Hydro Model NN 
Model

Reg 
Model

Hydro 
Model

NN 
Model

Reg 
Model Hydro Model NN 

Model
Reg 

Model
Error Mean 40.65 -36.51 0.00 20.42 -40.95 -12.38 -18.40 -63.45 -35.80
Error StDev 308.28 270.80 232.23 394.97 380.87 336.31 418.33 379.50 391.25
Corr. Coef 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.98 0.98

Date Interval

Data Points

Hydro Model NN 
Model

Reg 
Model

Hydro 
Model

NN 
Model

Reg 
Model Hydro Model NN 

Model
Reg 

Model
Error Mean 280.96 -27.13 0.00 197.96 -9.62 -20.35 251.54 27.94 39.67
Error StDev 917.64 428.27 563.73 938.17 538.62 599.50 1004.05 763.90 699.18
Corr. Coef 0.78 0.94 0.89 0.84 0.95 0.93 0.89 0.92 0.94

South Fork

8/2/1964-2/7/1982 2/14/1982-6/14/1992 6/21/1992-5/9/1999

915 540 360

400

North Fork

10/2/1960-11/25/1979 12/02/1979-5/26/1991 6/2/1991-1/24/1999
1000 600 400

Model Training Period Calibration Period Validation Period

Middle Fork

10/2/1960-11/25/1979 12/02/1979-5/26/1991 6/2/1991-1/24/1999

1000 600
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Table 7: Monthly Error Statistics 
Site Stats

Date Interval
Data Points

Hydro Model NN 
Model

Reg 
Model

Hydro 
Model

NN 
Model

Reg 
Model Hydro Model NN 

Model
Reg 

Model
Error Mean -75.34 87.26 0.00 -86.40 137.23 10.72 -200.06 116.65 -8.52
Error StDev 820.25 392.58 563.10 748.20 631.45 588.71 751.06 567.12 492.27
Corr. Coef 0.75 0.93 0.85 0.88 0.90 0.90 0.92 0.91 0.93

Date Interval
Data Points

Hydro Model NN 
Model

Reg 
Model

Hydro 
Model

NN 
Model

Reg 
Model Hydro Model NN 

Model
Reg 

Model
Error Mean 40.28 13.22 0.00 21.09 12.42 -22.40 -20.32 -22.20 -59.97
Error StDev 222.98 201.50 189.52 262.90 274.40 227.49 239.64 282.35 276.68
Corr. Coef 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

Date Interval
Data Points

Hydro Model NN 
Model

Reg 
Model

Hydro 
Model

NN 
Model

Reg 
Model Hydro Model NN 

Model
Reg 

Model
Error Mean 278.86 61.76 0.00 204.29 111.41 -48.75 244.69 264.90 85.49
Error StDev 742.56 426.83 516.43 718.22 616.92 585.69 709.99 815.10 634.88
Corr. Coef 0.79 0.91 0.87 0.87 0.92 0.91 0.91 0.89 0.93

South Fork

8/1/1964-1/1/1982 2/1/1982-7/1/1992 8/1/1992-7/1/1999
210 126 84

North Fork

10/1/1960-11/1/1979 12/01/1979-5/1/1991 6/1/1991-1/1/1999
230 138 92

Model Training Period Calibration Period Validation Period

Middle Fork

10/1/1960-11/1/1979 12/01/1979-5/1/1991 6/1/1991-1/1/1999
230 138 92
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Table 8: Model Performance Statistics by Frequency Range (Middle Fork; Daily Res.) 
(a) Middle Fork Daily Performance Statistics for the Training Data Set

Error Mean (cfs) Error StD (cfs) Correlation Coef
Hydro Model -155.74 373.64 0.48
Regression -90.60 124.17 0.62

NN -72.13 77.58 0.58

Hydro Model -22.12 884.28 0.16
Regression 8.60 229.86 0.71

NN -54.25 177.88 0.76

Hydro Model -85.30 1915.08 0.80
Regression 95.26 1244.38 0.92

NN 183.22 849.17 0.96

(b) Middle Fork Daily Performance Statistics for the Calibration Data Set
Error Mean (cfs) Error StD (cfs) Correlation Coef

Hydro Model -245.42 472.80 0.46
Regression -110.70 138.86 0.57

NN -61.32 80.73 0.56

Hydro Model 83.42 690.04 0.28
Regression 21.07 194.89 0.76

NN -61.50 153.52 0.79

Hydro Model -85.30 1915.08 0.80
Regression 101.76 1110.68 0.95

NN 248.18 1507.09 0.91

(c) Middle Fork Daily Performance Statistics for the Validation Data Set
Error Mean (cfs) Error StD (cfs) Correlation Coef

Hydro Model -204.35 433.70 0.41
Regression -120.93 176.97 0.49

NN -57.75 113.21 0.49

Hydro Model 119.64 584.48 0.46
Regression 44.74 234.03 0.75

NN -24.11 147.44 0.84

Hydro Model -826.70 1564.62 0.92
Regression 11.62 1194.29 0.95

NN 302.47 1210.72 0.96

Lower Quartile

Middle Half

Upper Quartile

Lower Quartile

Middle Half

Middle Half

Upper Quartile

Upper Quartile

Lower Quartile
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Appendix A: Optimal NN and Regression Model Parameters  
 

 
Table A.1: NN Parameter Values for Middle Fork Daily Model 

Layer Number: 3
Node Number: 5 5 1
Weights: -0.888884 -3.582958 -4.999488 0.914281 7.314926

5.618609 7.500558 2.780233 1.524323 0.829251
3.947812 8.040352 1.618159 3.376513 -0.318189

-3.701609 -8.076194 -0.697389 4.847134 14.24186
1.480669 4.244882 1.206704 2.707429 10.15535

-3.658513
-7.44486

-3.823135
3.510368
12.13742

Node Bias: 1.529248 2.681082 -1.509441 -3.208427 1.081049
-3.692075

WMAX0: 66471.1
WMIN0: 35
A0: 0.001
B0: 0.999  

 
 

Table A.2: NN Parameter Values for North Fork Daily Model 
Layer Number: 3
Node Number: 5 5 1
Weights: -3.158966 -7.58816 -1.216348 4.48385 19.4596

2.540033 3.89808 1.860423 0.309008 8.075477
0.561392 0.704708 8.873977 0.027843 3.022941

-2.105885 -6.06054 -1.361921 1.19585 16.97616
-1.579313 -1.458238 4.325389 -0.340015 10.07345

-3.89908
-7.330797
-4.864519
1.734884
13.20588

Node Bias: 3.280693 -0.710318 1.890808 -2.305154 1.461949
-6.325729

WMAX0: 50100
WMIN0: 0
A0: 0.001
B0: 0.999  
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Table A.3: NN Parameter Values for South Fork Daily Model 

Layer Number: 3
Node Number: 5 5 1
Weights: -2.041518 -2.460196 -0.656964 1.792492 7.297321

4.277334 8.341756 0.563343 3.133529 -0.339188
0.212028 2.795342 -3.3074 0.900303 -1.616237

-2.213365 -1.734348 -2.879643 2.551316 22.99903
1.999793 5.020986 0.603094 -1.025133 7.20419

-4.098245
-6.679822

-3.42211
3.881461
12.73089

Node Bias: 2.133452 1.32463 -0.276076 -2.906683 1.073274
-4.48808

WMAX0: 83845.91
WMIN0: 0.2
A0: 0.001
B0: 0.999  

 
 

Table A.4: NN Parameter Values for Middle Fork Weekly Model 
Layer Number: 3
Node Number: 5 5 1
Weights: -2.884821 -0.888122 -0.780764 2.585708 5.726822

2.628122 8.308178 2.560712 2.287221 -0.435371
0.541663 3.617836 0.585292 0.664613 -0.194924

-0.068559 -0.176908 0.243502 2.633347 14.70384
-0.537318 3.529567 -0.116316 0.896137 6.190801
-3.354298
-7.638834
-1.626635
2.695825
11.41788

Node Bias: 1.772357 1.08794 1.671737 -1.840379 0.676701
-2.783616

WMAX0: 28905.71
WMIN0: 39.14286
A0: 0.001
B0: 0.999  
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Table A.5: NN Parameter Values for North Fork Weekly Model 
Layer Number: 3
Node Number: 5 5 1
Weights: -3.080696 -2.684349 -0.949766 2.175233 16.85477

2.027743 2.758696 2.181307 -0.035997 1.139837
-0.564888 1.330233 1.080687 -0.226319 0.350007
-0.740893 -2.397204 -1.130183 1.701647 4.992117
-2.107294 0.528316 0.17924 0.302846 1.740648

-4.63195
-5.008659
-3.177504
1.876221
10.09257

Node Bias: 2.604283 -0.951954 0.614936 -1.627675 0.941672
-4.76124

WMAX0: 25204.29
WMIN0: 12
A0: 0.001
B0: 0.999  

 
 

Table A.6: NN Parameter Values for South Fork Weekly Model 
Layer Number: 3
Node Number: 5 5 1
Weights: -0.823897 -3.156079 0.222071 0.688722 5.302401

2.959521 6.223917 1.428093 0.854529 0.281573
1.006442 4.502143 0.130396 0.928854 -0.843008
0.138825 0.88944 -0.703542 2.175765 10.25612
0.226638 3.865294 -0.099218 1.286337 4.479108

-2.123748
-6.077235
-0.508851
2.910759
8.63878

Node Bias: 2.460104 1.28883 0.717573 -1.484295 0.54942
-3.13037

WMAX0: 25757.92
WMIN0: 21.42857
A0: 0.001
B0: 0.999  
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Table A.7: NN Parameter Values for Middle Fork Monthly Model 
Layer Number: 3
Node Number: 5 5 1
Weights: -7.790933 -5.768942 4.261188 -0.639621 2.611355

2.031633 4.867616 9.868016 9.055346 -3.358301
2.936795 -0.314255 -4.883083 2.28842 2.501912
1.430791 3.221581 2.021179 2.489327 11.3144

-0.686704 10.47672 -3.033856 -10.77249 -2.34425
-4.31511

-5.643095
-3.168276
2.379822
6.509402

Node Bias: -1.01274 2.822428 -1.435052 -1.604256 -0.43588
0.501275

WMAX0: 8874.73
WMIN0: 42.76667
A0: 0.001
B0: 0.999  

 
 
 

Table A.8: NN Parameter Values for North Fork Monthly Model 
Layer Number: 3
Node Number: 5 5 1
Weights: -1.521528 -2.8502 -0.808751 2.908546 13.83522

2.058204 0.478752 1.0185 -0.422062 -1.092726
-0.284757 -0.208507 0.171692 1.192788 -0.759688
2.211736 -1.736473 -0.16094 0.635577 2.854185

-0.575878 1.789484 0.47564 0.724327 0.093654
-3.282083
-3.819976
-1.569874
1.900481
8.79964

Node Bias: 1.357093 2.239727 0.382052 -0.837071 0.824089
-4.046144

WMAX0: 8403.464
WMIN0: 13.35484
A0: 0.001
B0: 0.999  
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Table A.9: NN Parameter Values for South Fork Monthly Model 
Layer Number: 3
Node Number: 5 5 1
Weights: 0.480401 -0.612357 -0.393393 3.128616 5.170573

1.935438 3.443904 4.401286 -0.036534 3.495662
0.368141 0.845927 0.960912 -0.792755 3.589649
0.080935 -6.066286 2.335155 2.233803 7.048553
0.856736 -0.078581 6.803391 0.53021 0.709168
-0.44191

-3.704915
-4.721416

1.67848
5.888172

Node Bias: -0.709712 -0.941614 0.032526 -2.191775 -0.564498
-2.162302

WMAX0: 9672.581
WMIN0: 41.75533
A0: 0.001
B0: 0.999  

 
 

Table A.10: Regression Model Parameters 
Sites A1 A2 A3 A4 A5 A6 ErrMean Err StDev

Middle Fork 0.856944 -0.688550 -0.014101 0.825331 -0.037666 50.489220 0.00 636.89
North Fork 0.974699 -0.430458 -0.164625 0.494576 0.161898 -12.588500 -0.01 302.06
South Fork 0.592255 -0.517824 0.048180 0.837042 -0.031868 134.766000 0.00 546.84

Middle Fork 0.892717 -0.625552 -0.097315 0.585524 0.133095 107.403300 0.00 610.99
North Fork 1.131627 -0.585203 -0.068850 0.518470 0.038052 -7.099128 0.00 232.23
South Fork 0.657218 -0.392157 -0.092401 0.597608 0.131978 187.021200 0.00 563.73

Middle Fork 0.702480 -0.561408 0.289821 0.654916 -0.299745 208.332200 0.00 563.10
North Fork 1.155259 -0.370891 0.006100 0.240872 0.004796 5.111220 0.00 189.52
South Fork 0.584500 -0.412246 0.159729 0.708328 -0.229759 365.004500 0.00 516.43

Daily

Weekly

Monthly
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Appendix B: Figures of Observed vs. Modeled Flows  
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Middle Fork Daily Flow Sequences
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Figure B.1: Daily Flow Sequences 
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Middle Fork Weekly Flow Sequences
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Figure B.2: Weekly Flow Sequences 
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Middle Fork Monthly Flow Sequences
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Figure B.3: Monthly Flow Sequences 
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NN Model Results; Middle Fork; Training Period
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Figure B.4: Daily NN Model Results; Middle Fork;  
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NN Model Results; North Fork; Training Period
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Figure B.5: Daily NN Model Results; North Fork 
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NN Model Results; South Fork; Training Period
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Figure B.6: Daily NN Model Results; South Fork 
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NN Model Results; Middle Fork; Training Period
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Figure B.7: Weekly NN Model Results; Middle Fork 
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NN Model Results; North Fork; Training Period
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Figure B.8: Weekly NN Model Results; North Fork 
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NN Model Results; South Fork; Training Period
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Figure B.9: Weekly NN Model Results; South Fork 
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NN Model Results; Middle Fork; Training Period
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Figure B.10: Monthly NN Model Results; Middle Fork 
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NN Model Results; North Fork; Training Period
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Figure B.11: Monthly NN Model Results; North Fork 
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NN Model Results; South Fork; Training Period
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Figure B.12: Monthly NN Model Results; South Fork 
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Regression Model Results; Middle Fork; Validation Period
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Figure B.13: Daily Regression Model Results; Middle Fork 
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Regression Model Results; North Fork; Training Period
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Figure B.14: Daily Regression Model Results; North Fork 
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Regression Model Results; South Fork; Training Period
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Figure B.15: Daily Regression Model Results; South Fork 
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Regression Model Results; Middle Fork; Training Period
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Figure B.16: Weekly Regression Model Results; Middle Fork 
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Regression Model Results; North Fork; Training Period
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Figure B.17:  Weekly Regression Model Results; North Fork 
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Regression Model Results; South Fork; Training Period
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Figure B.18: Weekly Regression Model Results; South Fork 
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Regression Model Results; Middle Fork; Training Period
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Figure B.19: Monthly Regression Model Results; Middle Fork 
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Regression Model Results; North Fork; Training Period
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Figure B.20: Monthly Regression Model Results; North Fork 
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Regression Model Results; South Fork; Training Period
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Figure B.21: Monthly Regression Model Results; South Fork 
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Appendix C: Performance Comparison by Frequency Range  
 
C.1 Training Data Set  
 

Table C.1: Performance Statistics for the Training Data Set (Middle Fork) 
Error Mean (cfs) Error StD (cfs) Correlation Coef

Hydro Model -155.74 373.64 0.48
Regression -90.60 124.17 0.62

NN -72.13 77.58 0.58

Hydro Model -22.12 884.28 0.16
Regression 8.60 229.86 0.71

NN -54.25 177.88 0.76

Hydro Model -85.30 1915.08 0.80
Regression 95.26 1244.38 0.92

NN 183.22 849.17 0.96

Lower Quartile

Middle Half

Upper Quartile
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Middle Fork; Lower Quartile
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Middle Fork, Lower Quartile; Training Period

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100

cf
s

Obs.
Hydro.
Reg
NN

 
 

Figure C.1.1: Lower Quartile Training Data Set Comparison 
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Middle Fork; Middle Half
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Middle Fork, Middle Half; Training Period
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Figure C.1.2: Middle Half Training Data Set Comparison 
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Middle Fork; Upper Quartile
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Figure C.1.3: Upper Quartile Training Data Set Comparison 
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C.2 Calibration Data Set  
 

Table C.2: Performance Statistics for the Calibration Data Set (Middle Fork) 
Error Mean (cfs) Error StD (cfs) Correlation Coef

Hydro Model -245.42 472.80 0.46
Regression -110.70 138.86 0.57

NN -61.32 80.73 0.56

Hydro Model 83.42 690.04 0.28
Regression 21.07 194.89 0.76

NN -61.50 153.52 0.79

Hydro Model -85.30 1915.08 0.80
Regression 101.76 1110.68 0.95

NN 248.18 1507.09 0.91

Lower Quartile

Middle Half

Upper Quartile
 

 



 52

Middle Fork; Lower Quartile
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Figure C.2.1: Lower Quartile Calibration Data Set Comparison 
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Middle Fork; Middle Half

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 201 401 601 801 1001 1201 1401 1601 1801 2001

cf
s

Obs.
Hydro.
Reg.
NN.

 

Middle Fork, Middle Half; Calibration Period

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80 90 100

cf
s

Obs.
Hydro.
Reg
NN

 
 
 

Figure C.2.2: Middle Half Calibration Data Set Comparison 
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Middle Fork; Upper Quartile
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Middle Fork, Upper Quartile; Calibration Period
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Figure C.2.3: Upper Quartile Calibration Data Set Comparison 
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C.3 Validation Data Set  
 

Table C.3: Performance Statistics for the Validation Data Set (Middle Fork) 
Error Mean (cfs) Error StD (cfs) Correlation Coef

Hydro Model -204.35 433.70 0.41
Regression -120.93 176.97 0.49

NN -57.75 113.21 0.49

Hydro Model 119.64 584.48 0.46
Regression 44.74 234.03 0.75

NN -24.11 147.44 0.84

Hydro Model -826.70 1564.62 0.92
Regression 11.62 1194.29 0.95

NN 302.47 1210.72 0.96

Lower Quartile

Middle Half

Upper Quartile
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Middle Fork; Lower Quartile
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Figure C.3.1: Lower Quartile Validation Data Set Comparison 
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Middle Fork; Middle Half
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Figure C.3.2: Middle Half Validation Data Set Comparison 
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Middle Fork; Upper Quartile
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Middle Fork, Upper Quartile; Validation Period
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Figure C.3.3: Upper Quartile Validation Data Set Comparison 
 


