

Data Assimilator (DA) for Hydrology Laboratory's Research Distributed Hydrologic Model (HL-RDHM)

Haksu Lee^{1,2}, Dong-Jun Seo^{1,2}, Victor Koren¹

NOAA/NWS/Office of Hydrologic Development¹ University Corporation for Atmospheric Research²

Acknowledgments

- NOAA Climate Program Office/Climate Prediction Program for the Americas (CPPA)
 - Core Project: Pedro Restrepo, John Schaake, Ken Mitchell
 - "Incorporating knowledge of observational uncertainties in streamflow forecasting applications in the Western US": Andrew Slater, Martyn Clark
- NASA
 - "Improving NOAA/NWS River Forecast Center Decision Support with NASA Satellite and Land Information System Products": Pedro Restrepo, Ashutosh Limaye, Christa Peters-Lidard
- AHPS/XEFS
- Hydrologic Ensemble Prediction Group Limin Wu, Julie Demargne, James Brown, Satish Regonda, Yuqiong Liu
- Hydrology Group Ziya Zhang
- Hydraulics Group Fekadu Moreda

Predicting Floods to Droughts In Your Neighborhood

Objective of the project

- Develop a prototype data assimilator (DA) for distributed hydrologic models in HL-RDHM for more accurate, high-resolution analysis and prediction of streamflow and soil moisture
 - by reducing uncertainty in the model initial conditions (i.e. model soil moisture)

Outline of the presentation

- Models used
- Technique used
 - What is 4DVAR?
 - How does 4DVAR work?
- Questions investigated
- Approach
 - Synthetic experiments
 - Real-world experiment
- Conclusions
- Next steps

Models used

- Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM, Koren et al. 2004)
 - Gridded (~4x4 km²) soil moisture accounting models (SAC, API)
 - Gridded snow ablation model (SNOW-17)
 - Kinematic-wave routing
- The prototype DA assimilates the following data into gridded SAC-kinematic wave routing models (Seo et al. 2003b, Lee et al. a,b):
 - Streamflow (at outlet and interior locations)
 - Gridded precipitation
 - Potential evaporation (PE)
 - In-situ soil moisture

SAC-H

SAC-HT allows translation of SAC states to soil moisture, and hence assimilation of soil moisture data into SAC

WTTO2

OHD Seminar, May 29, 2008

Technique used

- 4-dimensional variational assimilation, or 4DVAR
 - Arguably the most advanced data assimilation (DA) technique used in *operational* weather forecasting today
 - More amenable to forecaster control than ensemble Kalman filter/smoother (Evensen 1994, Evensen and van Leeuwen 2000)
 - Amenable to ensemble DA via maximum likelihood ensemble filter (MLEF) (Zupanski 2005)

What does 4DVAR do?

- Given all available data, the model(s) and the prescribed uncertainties for them, adjust the selected variables (e.g. the model states) such that the model results best fit the data
 - Under user-prescribed criterion (usually minimization of mean square errors)
 - Necessarily model-dynamically consistent
 - Not unlike what a human forecaster may do
 - As in any curve fitting, subject to over-fitting (too large a degree of freedom) and under-fitting (too small a degree of freedom)

What does 4DVAR do? (cont.)

OHD Seminar, May 29, 2008

How does 4DVAR work?

Adjust model states, and observed precipitation and PE so that the model-simulated flow is sufficiently close to the observed

4DVAR

SWC 25cm (w/o DA)

SWC 1m (w/o DA)

SWC 1m (w/ DA)

BIAS IN PE

0 20 40 60

WTTO2 HR 00193 1993111711

12

SWC 75cm (w/ DA)

SWC 75cm (w/o DA)

BIAS IN PRECIP

4 N

SWC 60cm (w/o DA)

CHANNEL (w/o DA)

CHANNEL (w/ DA)

SWC 25cm (w/ DA) SWC 50cm (w/ DA)

OHD Seminar, May 29, 2008

ABRFC/WTTO2

PRECIP (w/ DA)

PRECIP (w/o DA)

SWC 5cm (w/ DA)

SWC 5cm (w/o DA)

HSLOPE (w/ DA)

HSLOPE (w/o DA)

Questions investigated

- What is the value of assimilating streamflow (outlet, interior) data for improved accuracy in monitoring (analysis) and prediction of streamflow and soil moisture?
 - According to uncertainty in the initial soil moisture conditions
- What is the value of assimilating in-situ soil moisture data?
- What is the value of assimilating gridded precipitation data

Approach

- Carry out synthetic and real-world experiments
- Why synthetic experiments?
 - In reality, truth is unknown and many uncertainties complicate understanding and interpretation
- In synthetic experiments:
 - Truth is known

Easier to evaluate DA performance

- Can separate different uncertainty sources

✓Initial condition uncertainty (ICU)

∠Precipitation uncertainty (PU)

Conter Observational uncertainty

Model structural and parametric uncertainty

 More likely to gain and advance understanding on hydrologic DA with distributed models

Synthetic experiments

- Methodology
 - Assume "true" initial soil moisture states (IC), streamflow (Q) and soil moisture (S) observations, and observed precipitation (P)
 - Perturb with low, medium and high levels of noise
 - IC, Q, S (Experiment 1, Lee et al.a)
 - IC, Q, S, P (Experiment 2, Lee et al.b)
 - Assimilate the observations via 4DVAR
 - Repeat above 2 steps to generate ensembles
 - Assess the quality of posterior ensembles
 - Monte-Carlo type of 4DVAR

Case studied 2000/ 6/ 22/ 18Z - 2000/ 6/ 24/ 6Z

Synthetic Experiment I: Sensitivity of DA to initial condition uncertainty (ICU) and observational uncertainties

Synthetic Experiment I: Results

OHD Seminar, May 29, 2008

Streamflow results for assimilating accurate streamflow & soil moisture obs under uncertain IC

Synthetic Experiment II: Sensitivity of DA to precipitation uncertainty (PU)

Precipitation Uncertainty Model

 $P_k(u)=B_k O_k (u) + \sigma Z_k(u)$

In $B_k=a_1 \ln B_{k-1}+W_k$ (Smith and Krajewski 1991) where

 $P_k(u)$: perturbed rainfall at location u at hour k (mm)

O_k(u): reference rainfall at hour k (mm)

B_k: mean field bias at hour k

Z_k(u): spatially-correlated standard normal random noise

 $\begin{array}{ll} 2\sigma/O_k(u) = 1 - 0.02 \ O_k(u) & \mbox{if } O_k(u) \leq 25.4 \ (mm) \\ 2\sigma/O_k(u) = 0.5 & \mbox{if } O_k(u) > 25.4 \ (mm) \\ & \mbox{(Carpenter and Georgakakos 2006)} \end{array}$

Figure 3 Standard deviation of radar-rainfall pixel error as a function of pixel rainfall value.

where

 σ : rainfall amount-dependent standard deviation of the noise

Total precipitation over the assimilation window [mm/hr] (input)

Total streamflow at the outlet over the assimilation window [mm/hr] (output)

Impact of additionally assimilating precipitation to streamflow and soil moisture simulation

Eldon

- Large precipitation uncertainty
- Medium streamflow observation uncertainty
- Medium soil moisture observation uncertainty lar 12, 2008

Impact of mean field bias (B'=B? α) and noise (σ '= $a_3\sigma$) to streamflow simulation via DA

Real-World Experiment

Real-World Experiment: Questions

- The models are never perfect
 - Structural errors
 - Parametric errors
- Soil moisture is seldom observed directly, and never at the model grid scale
- How to account for these uncertainties?
- How do these uncertainties impact DA?

Experiment Design

- Setup
 - Assimilation window: 36 hrs
 - Error variance for precipitation: sample variance
 - Error variance for streamflow: sensitivity analysis
 - Error variance for soil moisture: data analysis & model simulation
- Data
 - Soil moisture: 1997 2000 (Oklahoma Mesonet, Brock et al. 1995)
 - Streamflow: 1997 2000
 - Precipitation: ABRFC-produced operational multisensor QPE

Acknowledgment: We would like to thank the Oklahoma Climatological Survey for allowing the use of the Oklahoma Mesonet soil moisture data.

Uncertainties associated with in-situ soil moisture obs (OK Mesonet)

- Device error:
- Soil moisture sensor error (CSI 229-L) (e1)
- Numerical precision error (e2)
- Device limit to measure extreme values (e3)
- Scaling (e4)
 - pt to HRAP scale error estimated by cdf matching technique
 - bias correction is done by cdf matching
- Spatial variability (e5)
- Overall error variances (=e1+e2+e3+e4+e5)

 \leq 0.05 m³/m³ (Walker and Houser, 2004) is useful for data assimilation

OHD Seminar, May 29, 2008

OHD Seminar, May 29, 2008

Hourly Soil Moisture at Westville for yr 2000

rmse vs. lead time for streamflow for yr 2000

Conclusions

- Assimilating streamflow, in-situ soil moisture and QPE data in real time has large potential value for high-resolution analysis and prediction of streamflow and soil moisture
- However, its potency is sensitive to the uncertainty in the initial soil moisture conditions, the quality of observations and the goodness of the models (and their parameters) used
- It is seen that:
 - If the initial conditions are highly uncertain, soil moisture observations have larger positive impact than streamflow observations
 - If the initial conditions are less uncertain, accurate streamflow observations have larger positive impact than soil moisture observations

Conclusions (cont.)

- Assimilating QPE, in addition to streamflow and soil moisture observations, improves water balance calculations
 - If precipitation uncertainty is not properly accounted for in DA, streamflow balance may be improved, but only at the expense of deteriorated soil moisture balance
- If there are large uncertainties in QPE and in the initial conditions, assimilating soil moisture observations has large positive impact on analysis and prediction of soil moisture and streamflow
- Assimilating streamflow observations at both the outlet and interior locations generally improves streamflow prediction at those locations
- Assimilating soil moisture observations have large positive impact on model soil moisture states on cold starts

Upshot of all this

- A prototype DA has been developed that is capable of assimilating streamflow, in-situ soil moisture and gridded QPE into SAC and kinematic wave routing models of HL-RDHM
- Results thus far are encouraging, and points out salient observational, scientific and practical issues to be addressed
- Gained much understanding on how the major sources of uncertainty impact the performance of DA and what the next steps are toward improving operational worthiness
- The immediate next step is to simplify the current prototype to avoid "overfitting" and reduce computational burden (ongoing – should also help forecaster control of the DA), and to evaluate performance for multiple basins (ongoing)
- The new prototype to be considered for integration with HL-RDHM in the CHPS/FEWS/XEFS environment

Next Steps

- Simplify the current prototype
 - Avoid overfitting, reduce amount of computation
- Further assess model errors and their impact
- Better understand in-situ soil moisture measurement (HMT/Robert Zamora)
- Assimilate satellite-derived soil moisture data (w/ NCEP/EMC)
 - Into SAC-HT via LIS
 - Assimilate satellite-aided model soil moisture fields into the prototype DA
- Develop 4DVAR into ensemble DA using, e.g., maximum likelihood ensemble filter

Thank you

Q&A, discussion

OHD Seminar, May 29, 2008

Appendix

Uncertainty model for initial SAC states

$$\begin{split} X_k(0:k) &= X^{max} \left[exp(\eta_k) \text{-}1 \right] \text{+} X^{true} \\ \text{where } \eta_k &= \text{-}0.5 \ln[1 + (a_{\text{IC}} X^{max})^2] + \epsilon_k \left[\ln(1 + (a_{\text{IC}} X^{max})^2) \right]^{1/2}, \\ \epsilon_k &\sim \text{k-th spatially correlated N(0,1) random deviate} \end{split}$$

Uncertainty model for in-situ soil moisture obs

 $Z_{S}(t:k) = Z_{S}(t) + a_{S} w(t:k)$

Where w(t:k) is k-th temporally correlated N(0,1) random deviate

generated soil moisture obs ($a_s=0.03$)

 $\leq 0.05 \text{ m}^3/\text{m}^3$ (Walker and Houser, 2004) is useful for data assimilation Dec 10-15, 2007

Uncertainty model for streamflow obs

 $Q(t:k) = Q(t) + a_q Q(t) w(t:k)$

where w(t) is k-th temporally correlated N(0,1) random deviate

51

SERVI

Impact of additionally assimilating precipitation to streamflow simulation

Impact of additionally assimilating precipitation to soil moisture simulation at 25-cm depth

- Medium soil moisture observation uncertainty ar 12, 2008

Large perturbations to mean-field bias (median=3)

OHD Seminar, May 29, 2008

Vision for Ensemble & DA

OHD Seminar, May 29, 2008