CBRFC MRF Project

DOH Meeting
June 2004

Steve Shumate

CBRFC AHPS PROIECT

A cooperative effort between:

Colorado
University of Colorado at Boulder

NOAA-CIRES
Climate Diagnostios

Center

Goals

Introduce probabilistic 14 day meteorological forecasts
(ensembles) into a river forecast system.
Capture and display the uncertainty.

Verify the process.

Project Area: 27 Seciments Above Cameo, Colorado River

Method

Medium Range -orecast Model

Mean Areal Temperature and Precipitation Ensembles

Probabilistic River Forecasts

Medjum Range Forecast (MRF) yloded

- Global Meteorological Model
- Many Atmospheric Variables
- Frozen Version
- Run Daily at CDC
- ~70km Spatial Resolution

MRF Spatial Resolution

WAY TOO LARGE!

Need to Relate to Basin...

ENSEMBLE RE-FORECASTING :
 IMPROVINGMEDIUM-RANGE FORECAST SKILL USING RETROSPECTIVE FORECASTS
 Thomas M. Hamill1, Jeffrey S. Whitaker2, and XueWei1

1University of Colorado and NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado 2NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado

Downscalling

MRF Variables:
2 m air temp
Precipitation
700 mb Relative Humidity
Sea Level Pressure
-10m Vector Wind

- Total Column

Precipitable Water

Downscalling Method

1. Relates historical MRF scale variable to historical basin scale variables through multivariate linear regression equations. For example:

Basin MAP $=a_{1}($ MRF Precipitation $)+a_{2}($ MRF wind $)+$
2. Equations developed in (1) are applied to future MRF forecasts to produce forecasts of basin scale variables.
3. Multiple values at a particular time step are generated to create ensembles.

Downscaling Results

Input into ESP

MRF and Historical for 0221 for gbyc2hlf

MRF derived MAT/MAPs are attached to historical years ("ensembles") and 'fed' to ESP.

Schematic of Using Ensembles from MRF(day 1-14) As Input to ESP

Median forecasted temperature

Ensembles From The 'Frozen' MRF

> Ensembles From Historical Data

ESP peak flow

ESP Generated Data 02-26 for GBYC2H_F

Week 1

Weeks 3 \& 4

Exceedence Probability (99.8, 99, 90, 75, 50, 25, 10, 1, 0.2\%)
Smaller peaks because MRF is colder for first 14 days causes less melt.

ESp volumes

Smaller volumes through week 4 due to "banking" of water in colder than normal period leads to larger April - July volume.

Future Plans

Use Statistical Weather/Climate GeneratorIn Lieu of Historical Ensembles

Use Experimental Technique to Downscale GPC Forecasts/Apply to Historical and WX/Generator

Use Finer Grid MM5 Forecasts to Produce Downscaled MAPS/MATs

Investigate Downscale Errors - Lumps or Points

