CBRFC MRF Project

DOH Meeting June 2004

Steve Shumate

CBRFC AHPS PROJECT

A cooperative effort between:

Introduce probabilistic 14 day meteorological forecasts (ensembles) into a river forecast system.

Capture and display the uncertainty.

Verify the process.

Project Area: 27 Segments Above Cameo, Colorado River

Medium Range Forecast Model

Downscale to Model Variables

Mean Areal Temperature and Precipitation Ensembles

Probabilistic River Forecasts

<u>Medium Range Forecast (MRF)</u> <u>Model</u>

Global Meteorological Model
Many Atmospheric Variables
Frozen Version
Run Daily at CDC
~70km Spatial Resolution

MRF Spatial Resolution

WAY TOO LARGE! Need to Relate to Basin...

ENSEMBLE RE-FORECASTING : IMPROVINGMEDIUM-RANGE FORECAST SKILL USING RETROSPECTIVE FORECASTS

Thomas M. Hamill1, Jeffrey S. Whitaker2, and XueWei1 1University of Colorado and NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado 2NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado

<u>Downscaling</u>

MRF Variables:Basin Scale•2m air tempVariables:•Precipitation•Mean Areal•700mb Relative Humidity•Mean Areal•Sea Level Pressure•Mean Areal•10m Vector Wind•Mean Areal•Total ColumnPrecipitable Water

Downscaling Method

- Relates historical MRF scale variable to historical basin scale variables through multivariate linear regression equations. For example:
 - **Basin MAP** = a_1 (MRF Precipitation) + a_2 (MRF wind) +
- Equations developed in (1) are applied to future MRF forecasts to produce forecasts of basin scale variables.
- 3. Multiple values at a particular time step are generated to create ensembles.

Downscaling Results

MRF and Historical for 0226 for gbyc2hlf

MRF is colder than normal in this case.

Input into ESP

MRF and Historical for 0221 for gbyc2hlf

MRF derived MAT/MAPs are attached to historical years ("ensembles") and 'fed' to ESP.

Schematic of Using Ensembles from MRF(day 1-14) As Input to ESP

ESP peak flow

Smaller peaks because MRF is colder for first 14 days causes less melt.

ESP volumes

Smaller volumes through week 4 due to "banking" of water in colder than normal period leads to larger April – July volume.

Future Plans

Use Statistical Weather/Climate GeneratorIn Lieu of Historical Ensembles

Use Experimental Technique to Downscale CPC Forecasts/Apply to Historical and WX/Generator

Use Finer Grid MM5 Forecasts to Produce Downscaled MAPS/MATs

Investigate Downscale Errors – Lumps or Points