

Outline

- 1.Background
- 2.MFMAX & MFMIN parameterization
- 3.UADJ parameterization
- 4.Snow-17 run with new parameters
- 5.Planned work

SNOW-17 overview

Features:

- Point snow accumulation & ablation model and later applied to basin-wide through lumped model
- ➤ Conceptual model to simplify energy balance in snow pack
- Use 12 parameters
- ➤ Two input variables (air temp and precipitation)

Distributed SNOW-17

- SNOW-17 runs at each HRAP pixel (~4km).
- Other parameters need to be generated based on physiographical and/or climate properties as a starting point (a priori parameter)
 e.g.
 - MFMAX/MIN can be related to latitude, slope, aspect, forest, wind climatology.
 - UADJ and SCF can be related to wind climatology.

Current status of a priori parameterization

	Parameter	Description	A Priori grids available for CONUS?
Major	SCF	Snow Correction Factor	In progress
	MFMAX	Maximum Melt Factor	Yes ₁
	MFMIN	Minimum Melt Factor	Yes ₁
	UADJ	Ave. wind function during rain-on-snow	Yes 2
	SI	Areal SWE above which there is always 100% snow cover	No
	ADC	Areal Depletion Curve	Removed or simplified as straight line
Minor	NMF	Negative Melt Factor	No
	TIPM	Antecedent snow temperature index	No
	MBASE	Base temperature for non-rain melt factors	No
	PXTEMP	Temperature that separates rain from snow	No
	PLWHC	Percent liquid water holding capacity	No
	DAYGM	Daily Ground Melt	No

Notes:

- 1. ½ hrap available
- 2. Monthly grid
- 3. Looking for DEM & forest grid data for Alaska

MFMAX & MFMIN overview

- > Melt rate [mm/Δt] computation in no-rain condition
- Temperature index eq. with melt factor (M_f:mm/6hr/°C)

$$h_C = M_f \cdot T$$
 $M_f = f(MFMAX, MFMIN)$

Physiographic & Climate Grids

Methods

1. Based on recommended values (Anderson, 2002)

Forest Cover	MFMAX	MFMIN
Coniferous forest /persistent cloud cover	0.5 -0.7	0.2 - 0.4
Mixed forest Coniferous plus open and/or deciduous	0.8 - 1.2	0.1-0.3
Predominantly Deciduous	1.0-1.4	0.2- 0.6
Open Areas flat terrain	1.5-2.2	0.2-0.6
Mountainous terrain	0.9-1.3	0.1-0.3

Use forest density and type, aspect and slope grids i

- Use computed solar radiation
- Use monthly wind climatology
- Use forest density and type

Method 2

Snowmelt from simplified energy balance equation (non-rain)

$$h_c = \begin{bmatrix} 1.03 + 2.04 + 0.42 \cdot u \end{bmatrix} \cdot T$$
Radiation Sensible & latent heat

 h_c : melt rate [mm/°C/day]

T: daily average air temperature [°C]

u: Wind speed 10m above surface [m/s]

Assumption

- Clear sky
- Spring time
- Flat and no forest
- Snow albedo = 0.5

Account for topography & forest effect on radiation

$$h_c = [1.03 \cdot (1-g) \cdot R_{DB} + 2.04 + 0.42 \cdot u] \cdot T$$

Forest effect on radiation g: Forest percent

Topography effect on radiation

Flat area: $R_{db}=1$

Shaded area: $R_{db} < 1$

Exposed area: $R_{db} > 1$

Simplified energy equation = SNOW-17 equation

$$MFMAX = \frac{1.03 \cdot (1 - g) \cdot R_{DB} + 2.04 + 0.42 \cdot u}{2(R + 1)}$$

$$MFMIN = R \cdot MFMAX$$

Need to determine "R" and "RDB"

Derivation of R_{DB} Grid

 R_{DB} : Ratio of radiation with topo to radiation with no topo

Derivation of R grid

R: Ratio of winter radiation to summer radiation

MFMAX & MFMIN -Resolution effect **MFMIN** 1hrap MFMAX 1hrap ½ hrap 1/2 hrap Mfmin Mfmax 0 - 0.08 0.51 - 0.62 0.08 - 0.16 0.62 - 0.74 0.16 - 0.24 0.74 - 0.85 0.24 - 0.32 0.85 - 0.96 0.32 - 0.4 0.96 - 1.07 0.4 - 0.48 1.07 - 1.19 0.48 - 0.56 1.19 - 1.3 0.56 - 0.64 1.3 - 1.41 0.64 - 0.72 1.41 - 1.52 0.72 - 0.8 1.52 - 1.64 0.8 - 0.88 1.64 - 1.75 0.88 - 0.96 1.75 - 1.86 0.96 - 1.04 1.86 - 1.97 1.04 - 1.12 1.97 - 2.09 1.12 - 1.2 2.09 - 2.2 No Data No Data

MFMAX range

MFMIN range

UADJ parameterization

- ➤ UADJ = 0.002 x *U* (Anderson, 1976) where *U*: 6hr. wind travel (km) at 1m above snow surface
- > Used monthly wind climatology (10 m above surface) from NARR
- > Adjust wind speed at 1m above surface using a wind profile (Golubev et al. 1992)

UADJ=0.05

19L03S Slope 16.6 degree Forest 42.8 %

MFMAX		MFMIN	
Method 2	Method 1	Method 2	Method 1
1.21	0.7	0.43	0.4

UADJ=0.04

19L06S Slope 18.2 degree Forest 85.3 %

MFMAX		MFMIN	
Method 2	Method 1	Method 2	Method 1
0.76	0.55	0.35	0.25

UADJ=0.09

19L19S Slope 18.6 degree Forest 79.8 %

MFMAX		MFMIN	
Method 2	Method 1	Method 2	Method 1
0.76	0.55	0.35	0.25

Planned Work

- Continue a priori parameterization
 - MFMAX/MIN, UADJ (suggestions are welcome for improvement)
 - SCF
 - Minor parameters
 - Parameterization for Alaska/Hawaii
- Evaluation
 - A priori grid vs. RFC calibrated parameters
 - Evaluation on basin-wide SWE and SCA
 - Distributed SNOW-17 SWE vs. SNODAS product
 - Distributed SNOW-17 SCA vs. MODIS SCA
 - Evaluation on streamflow in snowmelt dominated basin
 - Conduct basin study for different climate regions (East, West and continental)
 - comparing flow from the distributed and calibrated lumped model.
- Calibration

Appendix Slide

Research Distributed hydrologic model

(RDHM) overview

Features:

- Modular and flexible system
- Gridded structure
- Independent snow and rainfallrunoff models for each grid cell
- Hillslope routing and channel routing of runoff

MF parameterization

Method 1

- 1. Forest type at each HRAP: mixed, conifer, deciduous, open.
- 2. A pixel is open if the forest % < 20%.
- 3. Depending on the forest type, recommended ranges of MFMAX and MFMIN values are selected from the table (Anderson, 2002).
- 4. From the selected range, a parameter value is determined based on the dominant aspect.
 - The highest value assigned to a south facing pixel,
 - The lowest value assigned to a north facing cells.
 - For other aspect, values linearly increase starting from north to south.
 - Median value assigned to flat (slope <1 %), facing west or east.</p>

Topographic effect on clear sky solar radiation

Aspect effect on solar energy flux

Wind adjustment

Adjustment factor –depends on forest % and type

Energy input for non-rain cond.

Energy input for Rain-on-snow cond.

Misc.

1 Wh=3600 J: the amount of energy transferred if work is done at an average rate of one watt for one hour