

Directions in Precipitation Processing

David Kitzmiller Hydrometeorology Group Hydrologic Science and Modeling Branch Hydrology Laboratory Office of Hydrologic Development NOAA National Weather Service

> DOH/RDM Conference June 2004

> > June 9, 2004

Today's Presentation

- Current problems in precipitation estimation for river forecasting
- Mitigation efforts
- Solutions in process
- Directions for the future
- Communication opportunities

Background

- Advanced hydrologic models require higher precipitation estimates with spatial and temporal higher resolution than can be achieved from gauge network
- Current operational hydrologic models will benefit from better precipitation estimates, particularly where gauge network is sparse
- The basis of the Multisensor Precipitation Analysis (MPE) package is statistical merging of rain gauge, radar, and satellite estimates
- The aim of MPE is to reduce biases and errors in radar and satellite estimates, then create optimal merge with rain gauge information

Hydrometeorology Group

Hydrologic Science and Modeling Branch / Hydrology Laboratory / Office of Hydrologic Development NOAA National Weather Service

Feng Ding, Rich Fulton, Shucai Guan, Dave Kitzmiller, Chandra Kondragunta, Dave Riley, DJ Seo, Kiran Shrestha

Feedback from RFC's

- Between June 2003 and May 2004, Hydrometeorology Group and/or HSEB personnel have directly contacted personnel from all RFC's
- Meeting venues: personal visits, RFC/WFO MPE teletraining, PQPE Advisory Group
 Most concerns about MPE are well known to us:

MPE Feedback from RFC's I

RFC	Area of Concern
NERFC	Bias correction for satellite estimates
MARFC	Underestimation relative to climatic gauge network
SERFC	PRISM data for Puerto Rico; cool-season underestimation
OHRFC	Bright band, spatially-random biases, Post Analysis functions
NCRFC	Bright band, cool-season underestimation
MBRFC	Bright band, cool-season underestimation
ABRFC	Lack of P3 functionality: method of bias correction, gauge QC features June 9, 200

MPE Feedback from RFC's II

RFC	Area of Concern
LMRFC	Interaction speed.
WGRFC	Merging of satellite estimates with radar/gauge; bias information sharing with WFO's
CBRFC	Lack of Mountain Mapper functionality: analyses for 6-hour amounts, interaction speed. Radar/gauge data gaps
CNRFC	Lack of Mountain Mapper functionality. Radar/gauge data gaps
NWRFC	Lack of Mountain Mapper functionality. Radar/gauge data gaps
APRFC	No satellite estimates.

What's Being Done...

MPE reanalysis:

- Carried out for SERFC, ABRFC; upcoming for WGRFC
- Changed some assumptions about parameter settings for minimum rainfall for gauge/radar bias

Satellite data integration:

- Bias-adjusted Hydroestimator available in OB4
 - Gauge/radar/satellite merging now being tested
- New graphical gauge QC aides in OB3
 - Spatial consistency check
 - Stuck gauge check

What's Being Done...

- Range correction for radar estimates:
 - Field test carried out for KLWX, KPBZ, KRLX, KEAX, KMPX, KRTX
 - Results indicate bright band effects significantly mitigated
 - RPG Implementation in 2005, fielded 2006, subject to TAC approval

Range Correction Applied to 12-H Precipitation Estimate

Original estimate

With range correction

What's Being Done Long Term...

Alternative processing of satellite data

- Have carried out two comparisons of MPE and NSSL QPE-SUMS
- Results inconclusive due to data problems
- Experiment planned for Intermountain Region this year
- Testing merged gauge/radar/satellite analysis field

CNRFC Area, Nov 2002 – May 2003 24-h independent gauge amounts, mean 13.3 mm

Mountain Mapper (Stage4), MPE, QPE-SUMS, Eta, Hydroestimator

CNRFC Area, Nov 2002 – May 2003 24-h independent gauge amounts, mean 13.3 mm

Mountain Mapper (Stage4), MPE, QPE-SUMS, Eta, Hydroestimator

CNRFC Area, Nov 2002 – May 2003 24-h independent gauge amounts, mean 13.3 mm

Mountain Mapper (Stage4), MPE, QPE-SUMS, Eta, Hydroestimator

24-Hour 3-Sensor Precipitation Estimates

Gauge

Radar

Satellite

Merged Field

Upcoming Improvements

- MPE adaptable parameters changes
- Gauge QC features
- Bias-corrected satellite estimates
- Multisensor mosaic using local bias correction available as an option (rather than mean-field bias correction)
- Gauge/radar/satellite MPE
- Enhancements targeted primarily for WFO's:
 - Sub-hourly gauge data
 - MPE analyses at 2-km resolution
 - Sub-hourly MPE analyses
 - 0-1 hour rainfall amount nowcasts
- Range-corrected radar precipitation

Longer-term enhancements:

- Data from TDWR
- Dual-polarization estimates
- Radar estimates in probabilistic form
- Higher-resolution estimates from WSR-88D
- Precip estimates from NWP model output

Beyond precipitation:

 Potential evapotranspiration estimates using satellite-derived insolation

Temperature analyses from NCEP operations

Possibilities for Probabilistic QPE

- RPG will output parameters for error distribution for rainfall estimate at each point
 Possible derived products:
 - Probability of any rain amount in given time period
 - Amounts corresponding to fixed probabilities
 - Range of rain amounts corresponding to a given confidence interval

Potential applications:

- Variable input to hydrologic models (input 70% exceedance threshold rain amount rather than deterministic amount)
- Gauge QC

Future HL/DOH Contacts...

- DOH/RDM conference
- Probabilistic Quantitative Precipitation Estimation Advisory Group
- SR RFC/WFO gauge data working group