OHRFC Verification Case Study

Tom Adams, OHRFC

What's covered?

- What's the value of QPF?
- What's the value of run-time MODs?
- Who's QPF is better: HAS or HPC?
- Verification differences across forecast points.

Precipitation Anomalies

CPC Soil Moisture Percentile

University of Washington VIC-CPC soil moisture percentiles

Methodology

- 6 parallel, non-operational batch OFS model runs; once daily on Dell-5
 - No MODs, no QPF
 - No MODs, with HPC QPF
 - No MODs, with HAS QPF
 - With MODs, no QPF
 - With MODS, with HPC QPF
 - With MODS, with HAS QPF
 - Operational Forecast runs with MODs & HAS QPF (directly archived)
- Run PRDUTIL TSDATA command to dump time series data
- Use custom Perl scripts to reformat TS data for Archive Database ingest
- Use IVP for analysis & generate graphics

Preliminary comments...

- Limited to 7 basins range in location, basin size, & basin response characteristics
- Analysis restricted to ~1-year period of concurrent archived OFS forecasts using HPC QPF
- 2 basins (MILO1 & NWBI3) are non-daily forecast points; implies sample size issues
- Some thought exists that OHRFC HAS QPF is not up-tosnuff wrt HPC QPF
- Operational Forecast Sample Size ≠ Batch OFS Model Runs with-MODs & with-HAS QPF
- Pittsburgh basins (PTTP1 & PSNW2) run twice daily more verification pairs

Forecast — Observtion pairs PSNW2

Plot of Instantaneous Height Sample Size against Location for OHRFC Compared Over Forecast Type Source Time Period: 2007-08-01 00:00:00 GMT - 2008-08-30 23:59:59 GMT Lead times: 0 hours - 120 hours Locations: PSNW2

Sample Size NWBI3 (non-daily)

Scatterplot MILO1 (FF)

Scatterplot MILO1 (XF)

Plot of Forecast-Observed Instantaneous Height Data Pairs for OHRFC Time Period: 2007-08-01 00:00:00 GMT - 2008-08-30 23:59:59 GMT Lead times: 0 hours - 120 hours Selected Location: Milan at [MILO1(HGIXFZZ)]

Sample Size MILO1(non-daily)

Size matters...

Scatterplot NHRI3 (FF)

Scatterplot NHRI3 (XF)

Basins Studied

ID	Forecast Group	Response	Basin Area (mi²)
MILO1	GTL	fast	371
PSNW2	MNU	fast	722
NWBI3	WHT	medium	4688
LAFI3	WBU	medium	7267
PTTP1	OHW	medium	19101
NHRI3	WBL	slow	29234
CCNO1	OHC	slow	76580

Basin Locations

Ohio RFC - MAE

Jan2007-Dec2007 DAY1 06H GRD(32km) (OBS & FOR)

Ohio RFC - ME

Jan2007-Dec2007 DAY1 06H GRD(32km) (OBS & FOR)

Ohio RFC - CVBIAS

Jan2007-Dec2007 DAY1 06H GRD(32km) (OBS & FOR)

Key

Code	Meaning	
XA	No MODs, No QPF	
XB	No MODs, with QPF	
XC	with MODs, No QPF	
XD	No MODs, with HPC	
XE	with MODs, with HPC	
XF	with MODs, with QPF	
FF	Operational Forecast	
FR	Persistence	

IVP Summary Graphics MAE

Plot of Instantaneous Height Error Statistics against Location for OHRFC Compared Over Forecast Type Source Time Period: 2007-08-01 00:00:00 GMT - 2008-08-30 23:59:59 GMT Lead times: 0 hours - 120 hours Locations: CCNO1, LAFI3, MILO1, NHRI3, NWBI3, PSNW2, PTTP1

IVP Summary Graphics ME

Plot of Instantaneous Height Error Statistics against Location for OHRFC Compared Over Forecast Type Source Time Period: 2007-08-01 00:00:00 GMT - 2008-08-30 23:59:59 GMT Lead times: 0 hours – 120 hours Locations: CCNO1, LAFI3, MILO1, NHRI3, NWBI3, PSNW2, PTTP1 0.427 STATISTIC (Forecast Type Source) 76580 7267 29234 4688 722 19101 **ME (FF)** 0.3 ME (FR) 0.2 ME (XA) ME (XB) 0.1 ME (XC) ME (XD) 0.0 ME (XE) Error Statistic Value (ft) ME (XF) -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 CCN01 LAFI3 MILO1 NHRI3 NWBI3 PSNW2 PTTP1 Location

IVP Summary Graphics RMSE

Plot of Instantaneous Height Error Statistics against Location for OHRFC Compared Over Forecast Type Source Time Period: 2007–08–01 00:00:00 GMT – 2008–08–30 23:59:59 GMT Lead times: 0 hours – 120 hours Locations: CCNO1, LAFI3, MILO1, NHRI3, NWBI3, PSNW2, PTTP1

IVP Summary Graphics MAE by Leadtime

IVP Summary Graphics ME by Leadtime

Plot of Instantaneous Height Error Statistics against Leadtime Interval for OHRFC **Compared Over Forecast Type Source** Time Period: 2007-08-01 00:00:00 GMT - 2008-08-30 23:59:59 GMT Lead times: 0 hours - 120 hours Locations: CCNO1, LAFI3, MILO1, NHRI3, NWBI3, PSNW2, PTTP1 0.2STATISTIC (Forecast Type Source) 0.0 -A- ME (XA) - ME (XC) -* ME (XD) -0.2 Error Statistic Value (ft) -0.4 -0.6 -0.8 -1.0-1.254 60 66 72 78 84 90 96 102 108 114 120 18 24 30 36 42 48 6 12 Lead Time Interval (hrs)

IVP Summary Graphics RMSE by Leadtime

IVP Summary Graphics MAE by Location

Plot of Instantaneous Height Error Statistics against Leadtime Interval for OHRFC Compared Over Location Time Period: 2007–08–01 00:00:00 GMT – 2008–08–30 23:59:59 GMT Lead times: 0 hours – 120 hours Locations: CCNO1, LAFI3, MILO1, NHRI3, NWBI3, PSNW2, PTTP1

IVP Summary Graphics ME by Location

IVP Summary Graphics RMSE by Location

POD & FAR NHRI3

POD & FAR NWBI3

POD & FAR MILO1

43

POD & FAR LAFI3

Summary

- Use of QPF improves forecasts...
 - more apparent for larger basins
- MODs generally improve forecasts
- Forecasts better with OHRFC HAS QPF than with HPC QPF
- Must carefully scrutinize statistics when drawing conclusions
- Statistics worse for flood-only points
- Sample size!

Future Study

- Analyze all modeled points (including non-daily)
- Look at >0 QPF forecasts vs zero-QPF forecasts
- Study 6-, 12-, 24-, 48-, 72-hour HPC forecasts