


# NWS Hydrology Forecast Verification Team: 18<sup>th</sup> Meeting

#### 09/22/2009 –12 pm EDT



# Outline

- Final team report: consensus on
  - Recommended verification metrics and products
  - RFC verification case studies
  - Future team activities
- CHPS Verification Service
  - Status
  - Input from Verification Team



# Final team report: consensus?

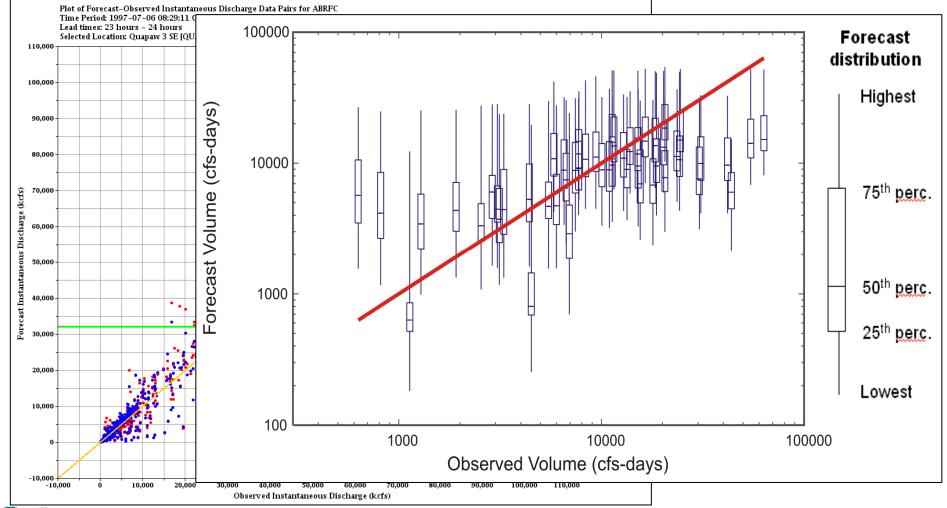
- Recommendations on
  - sets of verification metrics and products to be used at all RFCs
  - verification analyses
  - sensitivity analyses on impact of QPF horizon and impact of run-time mods made on the fly
- Future team activities
  - Second team charter: presented to HICs on 07/10/09 and reviewed in August 09
- Report to be finalized by 09/30/09



#### Final team report: recommendations

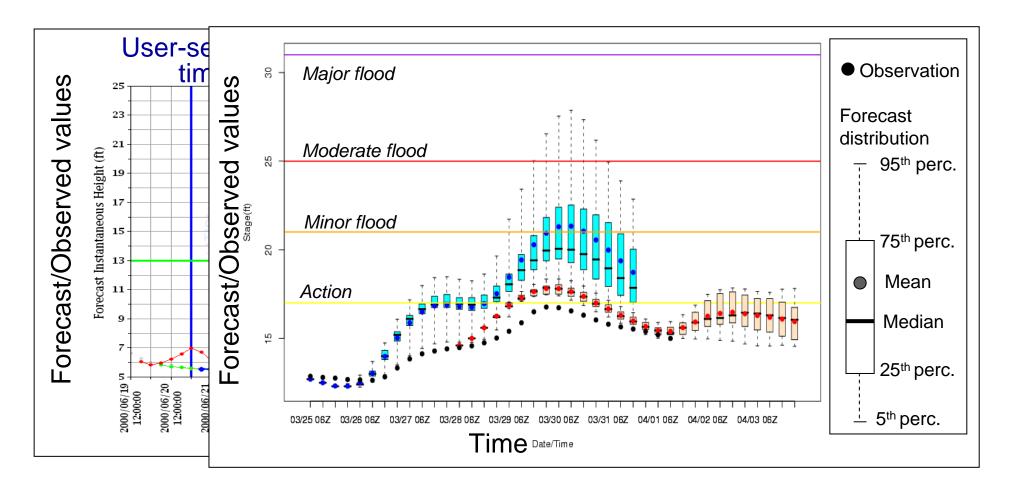
- Key verification metrics for 4 levels of information for single-valued and probabilistic forecasts
  - 1. Data information (scatter plots, box plots, time series plots)
  - 2. Summary information (e.g. skill scores)
  - 3. More detailed information (e.g. measures of reliability, resolution, discrimination, correlation)
  - 4. Sophisticated information (e.g. for specific events)
- Corresponding verification products




# Final team report: recommended metrics

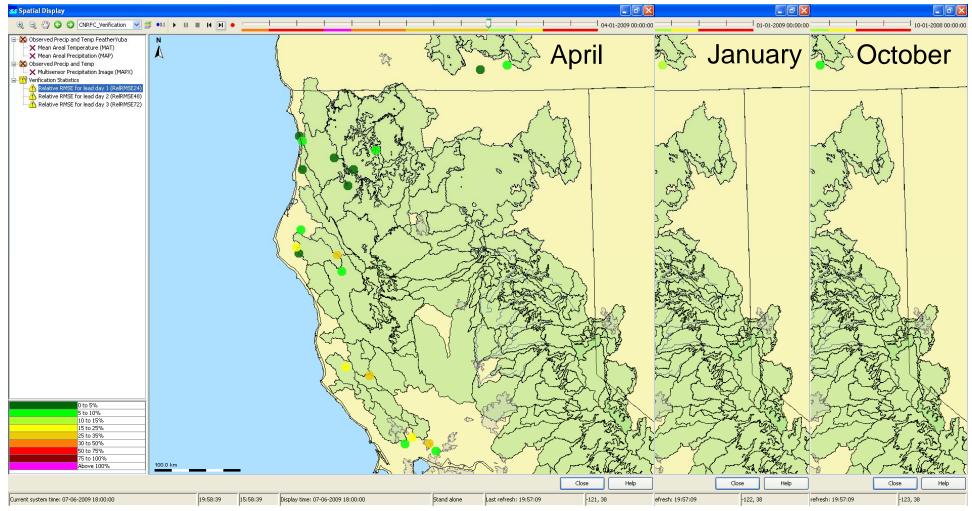
#### • 4 different levels of information

| Information             | Attributes     | Single-valued forecasts            | Probabilistic forecasts                                     |
|-------------------------|----------------|------------------------------------|-------------------------------------------------------------|
| level                   |                |                                    |                                                             |
| 1) Data                 | Forecast and   | Scatter plots for each lead time   | Scatter plots with box and                                  |
| information             | observed       |                                    | whiskers for each lead time                                 |
|                         | values         | Time series plots for set of       | Time series plots with box and                              |
|                         |                | forecasts                          | whiskers for set of forecasts                               |
| 2) Summary              | Error          | MAE                                | Mean CRPS                                                   |
| information             | Bias           | Relative Bias                      | Relative Bias in ensemble means                             |
|                         | Skill          | $MAE-SS_{ref}$                     | CRPSS <sub>ref</sub>                                        |
| 3) More                 | Error          | MSE                                | BS for set of events                                        |
| detailed<br>information | Skill          | $MSE-SS_{ref}$                     | $\operatorname{BSS}_{\operatorname{ref}}$ for set of events |
|                         | Reliability    | <b>Relia</b> bility <sub>MSE</sub> | Reliability <sub>CRPS</sub>                                 |
|                         | Resolution     | $Resolution_{MSE}$                 | $Resolution_{CRPS}$                                         |
|                         | Discrimination | ROC Score for set of events        | ROC Score for set of events                                 |
|                         | Correlation    | Correlation coefficient            | Correlation coefficient for<br>ensemble means               |
|                         | Sample size    | Number of forecast-observed pairs  | Number of forecast-observed pairs                           |
| 4) Sophisticated        | Reliability    | FAR for set of events              | Cumulative Talagrand Diagram,                               |
| information             |                |                                    | Reliability Diagram for set of                              |
|                         |                |                                    | events                                                      |
|                         | Discrimination | ROC curves for set of events       | ROC curves for set of events                                |
|                         | Forecast value | Relative value                     | Relative value                                              |



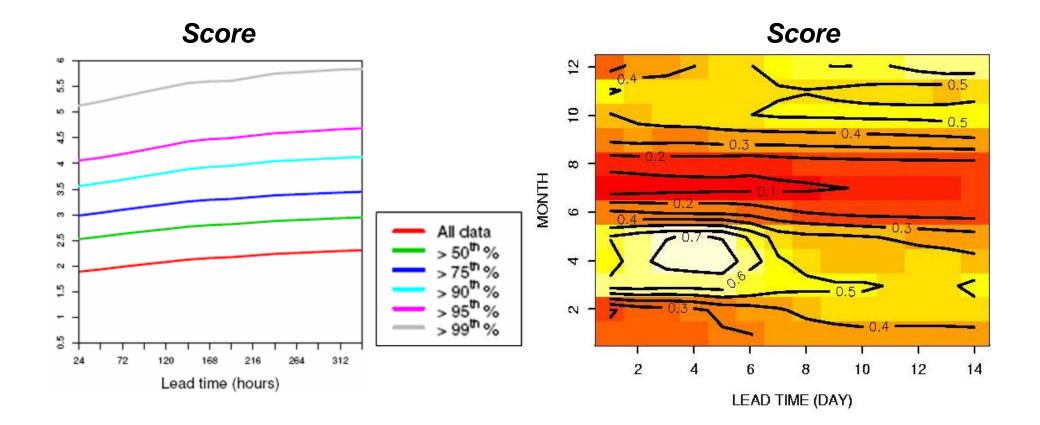

• Examples of verification products: level 1




18th Meeting, 09/22/2009

• Examples of verification products: level 1

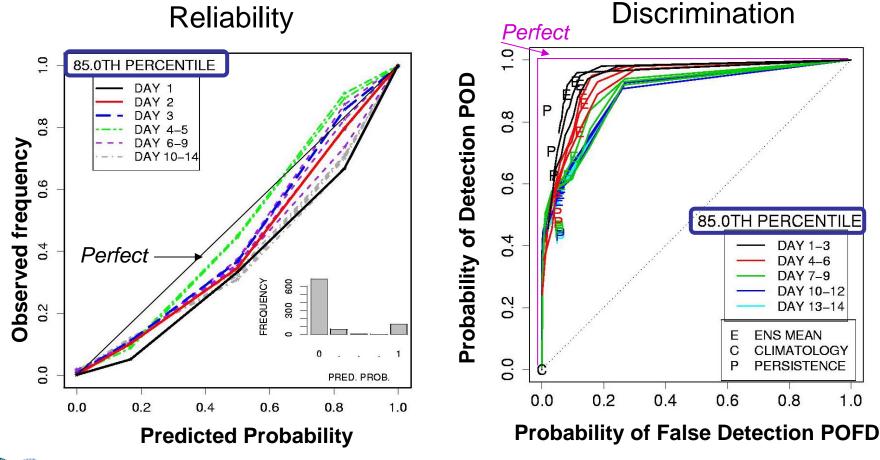





• Examples of verification products: level 2






• Examples of verification products: level 3





• Examples of verification products: level 4

Event: > 85<sup>th</sup> percentile from observed distribution



 $\mathbf{O}$ 

# Final team report: recommended analyses

- Analyze any new forecast process with verification
- Use different temporal aggregations (e.g. weekly max. flow)
  - Analyze verification statistic as a function of lead time
  - If similar performance across lead times, data can be pooled
- Perform spatial aggregation carefully
  - Analyze results for each basin and results plotted on spatial maps
  - Use normalized metrics (e.g. skill scores)
  - Aggregate verification results across basins with similar hydrologic processes (e.g. by response time: fast, medium, and slow)
- Report verification scores with sample size
  - In the future, confidence intervals



# Final team report: recommended analyses

- Evaluate forecast performance under different conditions
  - w/ time conditioning: by month, by season
  - w/ atmospheric/hydrologic conditioning:
    - low/high probability threshold
    - absolute thresholds (e.g., PoP, Flood Stage)
  - Check that sample size is not too small
- Analyze sources of uncertainty and error
  - Verify forcing input forecasts and output forecasts
  - For extreme events, verify both stage and flow
  - Sensitivity analysis to be set up at all RFCs:
    - 1) impact of QPF horizon
    - 2) impact of run-time mods made on the fly



# Sensitivity analysis: QPF horizon

- Goal: what is the optimized QPF horizon for hydrologic forecasts?
- QPF horizon to test:
  - 0 (no QPF), 6-hr, 12-hr, 18-hr, 24-hr, 30-hr, 36-hr, 48-hr, 72-hr, 96-hr
  - Longer horizon: optional
- Model states to use:
  - Similar to operational mods except mods that impact future states
  - Metadata to store which mods were used in these runs
- What forecast to verify
  - 6-hr stage forecasts for 7-day window (longer window for slow response basins)



# Sensitivity analysis: run-time MODs

- Goal: do run-time mods made on the fly improve forecasts?
- 4 scenarios
  - Operational forecasts (w/ all mods)
  - Forecasts w/ best available obs. and fcst. inputs wo/ on-the-fly mods
  - Forecasts w/ best available obs. inputs (no fcst) w/ all mods
  - Forecasts w/ best available obs. inputs (no fcst) wo/ on-the-fly mods
- What forecast to verify
  - 6-hr stage forecasts for same window as in operations
- Model states:
  - Carryover from 5 days ago (w/ past mods) + a priori mods (known before producing any forecast)



# Sensitivity analyses: what to do at RFCs?

- Goal for FY10: run the different forecasting scenarios and store outputs to start building an archive
  - Within CHPS or outside CHPS
- Steps:
  - Define workflows for the different forecasting scenarios
  - Everyday: run scenarios + store outputs and metadata
  - Perform data quality control
- OHRFC experience with multiple forecasting scenarios
- Experience from other RFCs?



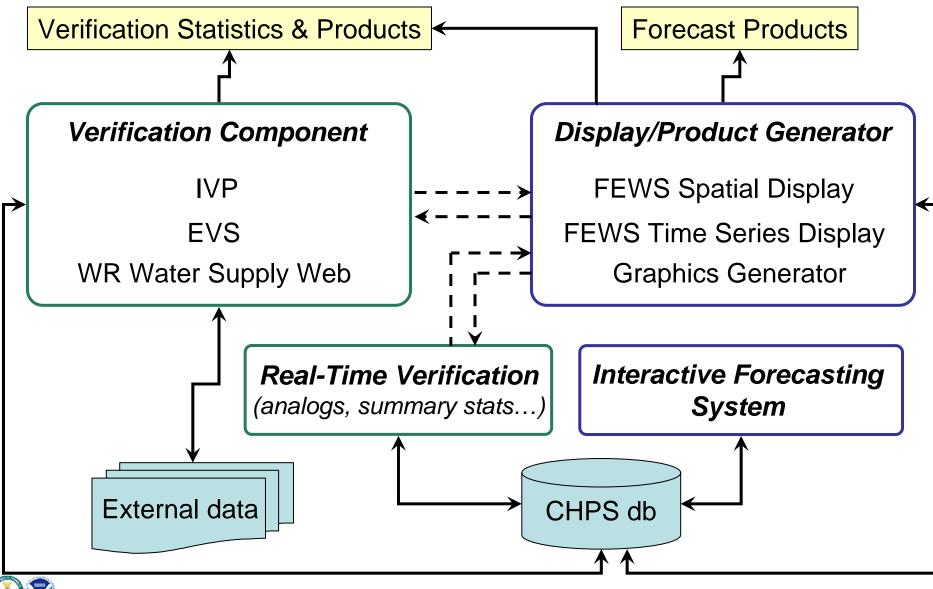
# Final team report: future team activities

- Produce and evaluate recommended verification standards w/ new RFC verification case studies
  - Are recommended standard metrics/products meaningful to forecasters?
- Perform user analysis of verification products w/ RFC SCHs and OCWWS
  - What verification products should be delivered to users?
- Develop requirements for disseminating RFC verification information at NWS Performance Branch and at RFCs
  - What are the best methods to supply verification information?



# Final team report: future team activities

- Support design and development of CHPS Verification Service (CHPS-VS):
  - Help develop user requirements
  - Review software design documents
  - Continue testing prototype functionality: EVS, CHPS displays
- Ultimate goal: provide useful verification information to
  - modelers and forecasters to guide improvements of forecasting system
  - users to maximize utility of forecasts in their decisions




### **CHPS Verification Service: development**

- Development strategy:
  - Use existing capabilities in verification software (IVP, EVS, WR water supply website), Graphics Generator, FEWS displays to develop prototypes for verification products and services
  - Collaboration with RFCs and OCWWS to determine CHPS
    VS requirements and meaningful verification products
  - HSEB-HSMB-Deltares collaboration for design, development & implementation



# CHPS Verification Service: current system



<sup>18&</sup>lt;sup>th</sup> Meeting, 09/22/2009

# CHPS Verification Service: team input

#### • Verification prototypes

- EVS version 2.0 to be delivered in early October 09 (w/ CHPS adapter): feedback through verif-hydro list server
- CHPS prototype displays: demo available at RFCs for feedback
- Verification products
  - Suite of products to be reviewed by RFCs (including SCHs) and OCWWS: initial examples from report; further examples in Nov.-Dec. 09
- Verification system requirements
  - List of questions to be sent to RFCs: analog query and display, spatial verification displays



# Next meeting

- 19<sup>th</sup> meeting: November-December 09
  - Present progress on
    - Setting up multiple forecasting scenarios at RFCs
    - Developing CHPS VS: prototype, products, requirements

# Thank you!

# **Questions?**



18th Meeting, 09/22/2009