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I. BACKGROUND 

I.1 FORECAST VERIFICATION 

Forecast verification is a process that aims to quantify and summarize the relationship 
between forecasts and observations. It also includes the problems of comparing 
observations, forecasts, and a reference forecast, particularly when an attempt is being made 
to compare different forecasts and/or forecasting systems (Potts, 2003). Wilks (1995) defines 
forecast verification as the process of determining the quality of forecasts. This requires the 
utilization of quality measures that summarize one or more aspects of the relationship 
between forecasts and observations. Technically, the three main objectives of forecast 
verification are (a) monitoring quality, (b) improve quality, and (c) compare the quality of 
different forecasting systems. However, users of forecast verification results range from 
administrators, who want to know the value of investing in forecast system improvement to 
forecasters and modelers, who want to assess areas of improving their own predictions, to 
forecast users, who weigh their decision based not only on the forecast but also on the 
quality of such forecast.  

By definition, the verification problem is a posteriori problem in the sense that it requires 
the simultaneous availability of observations along with their matching forecasts. In other 
words, one can not literally verify forecasts in realtime because their pertinent observations 
remain in the future. Therefore, realtime verification of forecasts must then be defined in 
terms of “quality of the forecasting system” as opposed to the problem of measuring the 
quality of the specific forecast. By referencing the forecasting system to specific conditions, 
the realtime verification problem becomes an assessment of the system’s performance as 
demonstrated by previous forecasts that were issued under conditions similar to those of the 
period immediately proceeding the current forecast (i.e, conditional verification). 

Since the Finley affair (1884-1893), which is considered as the starting point of 
developing verification measures and methods (Murphy, 1996), much of the developments 
in verification theory in the Earth sciences continued to occur almost exclusively within the 
weather forecasting discipline. Hydrologists, on the other hand, have for long time used 
various forecast quality measures for model calibration and validation studies (Viessman et. 
al., 1970). There has been considerable interest in verifying deterministic forecasts over the 
years. The current hydrologic verification system, although very rudimentary, it based strictly 
on deterministic forecasts. As such, both forecasters and administrators are familiar with 
many verification measures, particularly those associated with deterministic forecasts. Efforts 
to streamline, improve and re-organize hydrologic verification have with the establishment 
of a NWS verification team. The team’s report includes a review of both deterministic and 
probabilistic forecast measures, and recommendations for inclusion of a selected subset of 
measures into the next-generation verification team. Clearly, the notion of verifying 
probabilistic hydrologic forecasts has taken hold after the development and adoption of 
probabilistic forecasting approaches. The increasing utilization and popularity of 
probabilistic hydrologic forecasts, which were pioneered by the National Weather Service in 
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the form of Ensemble Streamflow Predictions (ESP) (Day, 1985), have resulted in various 
studies aiming to incorporate verification into hydrologic practices.  

 Our discussions with several forecasters and hydrologists in charge at various RFCs 
indicated that operational hydrologists view verification in a broader sense than their 
counterparts within the metorological community. Their view encompasses the utility of 
verification in validating whether a forecast is ready to issue as a final product or determining 
that it needs more work. In this view, verification becomes an operational issue as opposed 
to purely diagnostic issue. Such poses significant challenges including the determination of 
sample size, the identification of conditional verification (i.e., similar conditions), tracking 
model states, input, and output, relative to their climatology, and the establishment of links 
between the forecast issuance, verification, and simulation component of the forecast 
system. The above mentioned observation also highlights the necessity of conducting 
verification in the manner of which forecasts were issued. In this regard, the availability of 
archives of actual forecast is the best guarantee of appropriate verification study. In case 
such archive is not available, and one must resort strictly to performing re-forecast 
simulation (i.e. hindcasts), it is important that hindcasts whether deterministic or 
probabilistic, attempt to simulate, the largest possible extent, the actual forecasting 
procedure. This requires simulating forecasters’ judgments (e.g., modification to estimate 
most appropriate initial conditions, quality control), or a best approximation of the impact of 
her/his judgment on the forecast. This begs for distinguishing between research aiming at 
furthering verification theory, and that aiming at improving the utility of verification in 
operations. In the latter, researchers must be knowledgeable with the standard operational 
procedures, and able to use the same system the forecasters use. This has been a guiding 
principle of this study. We have attempted to the largest possible extent, to utilize the 
NWSRFS, its tools, and to consult with NWS staff and forecasters. For example, consider 
figure 1, which summarizes what we understand to be the major steps taken by a forecaster 
in the CNRFC to perform the major forecasting task for the day using NWSRFS. Clearly, 
identification of initial appropriate initial condition is the primary task associated with both 
deterministic and probabilistic forecasts. On the other hand, probabilistic forecasts (ESP) are 
automated without forecaster’s interference. Yet, they provide more accurate link to the 
likely model states on that day than those provided by “historical simulations”.   

Verification is fundamentally a statistical problem with roots in regression, probability 
distribution and multi-variate analysis theories. As mentioned earlier, most verification 
methods involve calculating a measure or a suite of measures that summarize various 
characteristics of the relationship between predictions and observations. In addition to 
numerical measures, exploratory (visual) analysis also serves as a complementary tool. In 
deciding which verification measure should be utilized, one must account for factors such as 
the type of forecasts, the predicted event, and the relevant forecast quality attributes. Figure 
1, summarizes the key elements of forecast verification problem.  

This report includes, in addition to the contractual deliverables, a review of the NWS-
Verification team draft report, along with two surveys intended for distribution to NWS 
forecasters and HICs. These additional deliverable were developed in collaboration with our 
project’s technical lead in order to facilitate future design and implementation of verification 
system. The surveys were provided to Union representatives and their comments were fully 
incorporated.   
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Figure 1. Forecasting procedure used by a representative CNRFC forecaster. Notice the amount of efforts that is paid to the development of appropriate model 
initialization. Notice also that ESP production, in this case is influenced by the deterministic forecast initial condition, but is automated. 
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Figure 2. Elements of Forecast verification problem (Predicted event, type of prediction, forecast attributes, verification measures).  
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II NWSRFS-ESP 

II.1 OVERVIEW 

This project focuses on short term (up to 15 days) probabilistic streamflow forecasts, 
particularly those generated using the National Weather Service River Forecast System’s 
Ensemble Streamflow Predictions (NWSRFS-ESP) procedure (Figure 3). The traditional 
implementation of ESP is based on using historical traces of precipitation and temperature, 
along with other relevant information (e.g. reservoir releases). This historical data are used to 
force the hydrologic model with initial conditions identified by the most recent observations 
of forcing variables. The result is an ensemble of traces representing possible discharges 
conditioned by the current initial conditions. In some river forecast centers, ESP traces are 
forced with probabilistic quantitative precipitation and temperature forecasts, particularly for 
the first few days of the forecast. However, this approach is still being developed and has yet 
to be implemented system wide. NWS is interested in issuing and utilizing short term 
probabilistic forecasts, where the duration of the forecast is less than 15 days. These 
forecasts can take a variety of forms, e.g., exceedence/non-exceedence probabilities of total 
volume for a given duration, or categorical forecasts such as the probability of exceeding 
certain flood stages.  

Figure 3. Schematics of the NWSRFS including ESP component.. Again notice the 
sequential independence of ESP forecast creation process from the deterministic forecast.   
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In order to obtain statistically significant verification results, particularly for ensemble 
forecasts, a large number of forecast ensemble and corresponding observations are 
necessary. These can be obtained by hindcasting (e.g. re-forecast), which is made possible 
through one or more of the tools available in the NWSRS (i.e., etsgen tool). The following 
discussion presents the approach used to generate the re-forecast information presented in 
this report.  

II.2 CASE STUDY 

We selected the Minnesota Forecast Group within the North Central River Forecast 
Center NCRFC for this study (Figure 4). The selection of this particular sub-basin was 
agreed upon during a meeting with NCRFC. As seen in the figure several headwater basins 
are available for the study.  The selection of headwater basins aims at dealing with forecast 
verification at the forecasting unit level. This is particularly important because modifications, which 
are known as “MODS”, are generally carried out at the forecasting unit level.  

 

Figure 4. NCRFC study area within the Minnesota River Basin. 

The key criterion affecting the selection of a given basin for diagnostic verification study 
is the availability of long-term precipitation (MAP), temperature (MAT), 6 hourly 
instantaneous discharge (QINE), and daily average discharge (QME). Therefore, our first 
task was to explore the available data for each of these variables.  
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Because our task aims at verification against actual historical data as opposed to 
historical simulation (known as HS files), two considerations were important. First, the 
historical records, which are available in the /calb/ (calibration data) directory must 
constitute both the ensemble forcing (MAP, and MAT) and the observations required for 
the creation of a verification data set (QME and QINE). Considering that our focus is on 
short term predictions, verification of probabilistic forecasts of cumulative volumes will be 
less important than verification of daily discharge.  Figure 5, illustrates the average daily 
discharge data available for the same set of basins. Our selection included: 

• Lac Qui Parle River [LQPM5] near Lac Qui Parle MN (USGS station 05300000)  

• White Stone River near Big Stone City-SD, [BGCS2] (USGS station 05291000)  

• Pomme De Terre River at Appleton MN [APPM5] (USGS Station 05293000) 

• Le Sueur River Near Rapidan MN [RPDM5] (USGS station 05320500).   

Figure 5, average daily discharge data for the study area 

The next step is to determine the study time-frame. To do so, we considered the 
statistical properties of the historical timeseries. Figure 6, shows a box-whisker plot for the 
LQPM5 watershed mean daily flow based on day of year with very large outliers being 
truncated above 4000 CFSD. Clearly, the most critical period for real-time short term 
forecast that is consistent with flood forecasting is the time period between March 1st and 
July 15. Similar hydrographs are seen for most of the other headwater basins. This is 
consistent with snow-melt season and early summer convective storms. Therefore, we 
proceded to create a diagnostic verification data set forecasts verification as seen in figure 6. 
This includes defining a forecast window (30 days) to allow for monthly flow volume 
verification if needed, a forecast stagger (1 day) to allow for future consideration of lead time 
impact on verification measures, and forecast analysis (15 days) to capture short term 
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forecasts. Carryover times will be saved on the each day of every month during the time 
frame and ensemble streamflow forecasts were generated henceforth. Ensemble simulations 
for the entire period have been completed for RPDM5, with other basins in progress for 
future studies. 

 
Figure 6. Experimental design for the report’s diagnostic forecast verification study. The box 
on the right shows the forecast, analysis, and stagger periods. The runs were performed to 
accommodate future expansion of research objectives including lead time impacts.  

The system installed at CHRS had several issues. Among these issues is the lack of 
connectivity of some key java libraries required to complete several scripting tasks aiming at 
converting the data from ESP card format into formats that could be read by standard 
software packages (ASCII tables). In order to complete our analyses, we had to resort to 
alternative methods that utilize several other tools in order to complete this project. It must 
be mentioned that all hindcasts performed were generated automatically and have not been 
cross validated. In addition, few starting carry-over dates were available and the system was 
not connected to new data, precluding consideration of additional information generally 
used such as NEXRAD precipitation, and/or PQPF. We attempted to emulate, to the best 
possible extent, the operational procedure of the NWS. Alas, the lack of data update forced 
our analysis to utilize only the most elementary approach to generate ESP hindcasts, and 
therefore the results presented in this study are not diagnostic, nor are they to be considered 
a conclusive assessment of ESP.  Figure 7 shows the configuration of the analysis system we 
implemented in our study.   
As seen in the figure our analysis utilizes the historical data available in the /calb/ directory, 
particularly the area_ts files. The analysis proceeds as following: 

1. Using RTI’s timeseries tool (tstool) convert the NWS Card files (QME and QIN) into 
ascii tables (comma or tab delimited). These files are then introduced into the R 
statistical package to develop the historical climatology data set for each day of the 
year (Figure 7).  

2. Using etsgen, generate the ensemble forecasts for each carryover date (1 day stagger 
and 30 days long forecasts as mentioned in the previous section 
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3. Again using RTI’s tstool convert each BASIN.BASIN.SQME.24. YEAR.CODATE 
file into a corresponding ascii table (tab or comma delimited).  

4. Using the R statistical package along with the results of step 3 extract verification 
data sets (as described by Bradley et al., 2003, and Bradley et. al, 2004). This involves 
converting the observations into a binary event using the climatological CDF, and 
identifying the probability forecasts for the selected day during forecasting period. 
Also compute the mean standard deviation of the probabilistic forecasts associated 
with each climatological threshold, which will be used to compute the continuous 
rank probability scores.  

5. Using the NCAR’s R’ verification package perform verification analysis for each 
day’s verification data set (given probabilistic forecast and binary observations). Plot 
attribute diagrams and other verification measures. Use the verification objects to 
identify other potential plots. Additional packages are also used such Hmisc to 
estimate empirical distributions, gplots and DAAG to control graphic devices and to 
generate screen shot-like R output. 

 

 
Figure 7, schematic diagram of analysis procedure. Reliance on manual procedures can be eliminated 
by considering a single RFC system instead of development version.  
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III. EXPLORATORY APPROACH 

III.1 INDIVIDUAL FORECASTS 

Forecasters’ ability to graphically explore recent observation and simulation data, recently 
issued forecasts, or a suite of hindcasts generated for verification purposes is essential in 
forming their initial understanding of the forecasting system. Each forecaster has a high level 
of familiarity with her/his forecast points, along with expertise in the capability of the 
deterministic components of the forecasting system. In the following, we first address these 
graphical approaches from the point of view of individual forecasts. It must be emphasized 
that while the examples presented herein use previous years of hindcasts, which were 
generated to exemplify quantitative verification measure and scores, the verification hindcast 
ensembles could easily be replaced with recent forecasts, or with specific forecasts associated 
with conditions similar to those existing at the time of forecast issuance. Needless to say, one 
must emphasize the exploratory nature of these graphical representations. Therefore, 
exploratory approaches can be utilized to address individual forecasts (ensembles) as well as 
a group of ensembles that are treated as a single sample.  

1. TRACE PLOTS  

The first and most straight forward of exploratory graphics is the classical ensemble plot 
superimposed with observations. When these plots are available for each hindcast/previous 
forecast year of the same forecasting window, the forecaster can form an initial assessment 
of the “forecast-observations” pairs for each year and of the forecasting system’s 
performance over the years. For example, consider Figure 7, which represent 15 hindcasts, 
each with 46 ensemble members, at the forecasting point (USGS 05320500 LE SUEUR 
RIVER NEAR RAPIDAN, MN, RPDM5: basin are 1110 square miles) during the analysis 
period April 1-15. This experiment, which will be used for the reminder of this report, was 
conducted by considering 45 year hindcasts, hereafter referred to as ensembles (1953-1997) 
with 46 ensemble members (hereafter referred to as traces) in each ensemble (1952-1997). 
From figure 8, the first benefit of side-to-side comparison of ensembles, along with 
observations (red line with dots) and the historical simulation (blue line with dots) is evident. 
A visual, qualitative assessment of the possibility of invalid probabilistic forecasts is possible, 
together with information about the magnitude and error associated with the model and/or 
initial condition using historical simulation. Trace plots could also be employed by 
forecasters to investigate the performance of recent forecasts. For example, during active 
precipitation/snow-melt period, forecasters could review the performance of recent short 
term forecasts, or the performance of the first few days of last week forecasts. In operational 
settings, this can provide the forecasters with a reasonable idea about the historical time-
series ability to represent recent conditions, and to weigh the need for other sources of 
information. Notice that in figure 8, the presence of a distinct historical simulation trace 
(blue line with dots) which allows the forecaster to assess the magnitude of error associated 
with model initialization based on the historical simulation. For an experienced forecaster, 
such information is valuable. Furthermore, the figure highlights the need for an alternative 
ESP hidncast  initialization strategy. This will be further discussed in later sections. 
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Figure 8. Sample screen shot of side comparison of trace-observation plots. Red an blue lines with 
dots: observations and historical simulation other lines: Traces of analysis period associated with the 
above-mentioned re-forecasting experiment. 
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SCREENSHOT 1  

Figure 8 also represents a possible screen shot that allows the forecaster to explore both 
the collection of hindcast ensemble, recent forecasts, as well as conditional verification data 
set. The forecaster can inspect the effects of initial condition on the disparity between the 
ensemble and the observations. She/he could also investigate the stability of recent forecasts 
of the same day but with different lead time, and finally to explore the possible selection of 
specific years within the conditional verification suite of ensembles. Clearly this screen of 
simple visual exploration of the data must be available to forecasters at any point during the 
verification. If the individual graphs are mouse-sensitive, forecasters can select the 
appropriate sub-set to include into more formal verification. The inclusion of both historical 
simulation, which is, in fact, a member of the ensemble associated with each year, allows the 
forecaster to obtain information regarding the potential source and magnitude of model 
error that may contribute to verification measures.  

 

2. BOX-WHISKER PLOTS  

 While trace-observations plots provide qualitative visual representation of the 
ensemble’s spread along with the observation, box and whisker plots can provide more 
quantitative visualization of the probability distribution of the ensembles, and therefore of 
the probabilistic forecasts themselves. The idea is not that the observations should fall within 
the center quartiles. Rather, the observations should occur throughout the ensemble 
distributions, at a rate that reflects perfect reliability.  These plots are different than the 
standard (probability range-color) plots utilized by the NWS in the sense that no specific 
assumption regarding the probability distribution of the forecasts is needed. They represent 
sample statistics and quartile ranges. Similar to trace plots, B-W plots can also be employed 
by forecasters to investigate the performance of recent forecasts. Figure 9 shows box plots 
for the same data set used in Figure 8.  

SCREENSHOT 2 

Figure 9 also represents a possible screen shot that allows the forecaster to explore both 
the collection of hindcast ensemble, recent forecasts, as well as conditional verification data 
set. In addition to inspecting the stability of recent forecasts, the forecaster could identify 
more qualitatively whether the observations fell within the range defining the proabilitis 
forecasts. Care must be exercised in this case not to expect observation to fall at the mid-
range of the probability distribution of the forecasts. In fact, for forecast to have reasonable 
resolution, the observations should cover, collectively, various points within the probability 
distribution of the forecasts as summarized by the box-whisker plot.  
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Figure 8. Box and Whisker plots for individual ensembles for the same data used in figure 9. 
Similarly, red and blue lines with dots represent observation and historical simulation, 
respectively.  
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Figure 10. Combining box plots, trace-plot, observation and historical simulation can yield a reasonable amount of information to 
forecasters regarding a given forecast. Example shown is for year 1961. Notice that while the historical simulation nearly matches the shape 
of the observed data, significant error in the initial state of the flow is seen. Notice the presence of information regarding the deterministic 
verification of a single trace, which is the historical simulation trace.  
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SCREENSHOT 3 

Figure 10 shows a possible “detailed” exploration of a given forecast. In the figure, box-
plot and trace plot are superimposed with the observation and historical simulation, but for 
individual forecast (top center). In addition, the probabilistic forecast is shown, and the 
forecaster can see whether the observations ensemble is providing sufficient probability bins 
(same as in espadp tool). In this case, 10 equally spaced bins are used. The rightmost column 
has the index color for each ensemble member year. The left column is the most important 
part of this screenshot. At the top, a deterministic verification of the historical simulation 
against the observation provides invaluable information to forecasters. As seen in the figure, 
this information includes the quantile-quantile plot (top-left panel), along with the observed-
predicted scatter plot, with the size of the dots being proportional to absolute error 
associated with each pair of observed-historical simulation points (center-left panel). The 
lowest-left panel provides a set of deterministic verification measures of the historical 
simulation. These include Mean Absolute Error (MAE),Mean Error (ME), Mean Square 
Error (MSE), and Root Mean Square Error (RMSE). In addition the MSE and RMSE values 
for baseline (mean observation) and for persistence are available, along with the Correlation. 
It is noteworthy that when MAE and ME are equal, the historical simulation is 
underestimating all the hydrograph, but if they are equal and of opposite signs, it 
overestimate the hydrograph. In general one wants the ME to be less than MAE.  The 
deterministic verification of the historical simulation aims at providing the forecaster with 
the ability to discern the impacts of errors in the simulation which provided the initial 
condition on the ensemble performance.  Higher confidence can be obtained for larger 
samples, which is available when 6 hourly hydrographs and stages are verified. One must be 
careful not to treat the full ensemble in deterministic manner. Only the historical simulation 
can be treated this way.   

 

3. HINDCAST EXPERIMENT EMPIRICAL CUMULATIVE DENSITY PLOTS 

One useful graphical representation of grouped forecasts is the cumulative density 
function (CDF) plot. Both empirical and probability-distribution fitted plots provide means 
to view the entire verification data set. Figure 11 shows the CDF plots for each of the 
ensembles (blue) and for the observations (bold red), for daily flows. The observation CDF 
represents the observation climatology and should not be compared directly to any single 
ensemble CDF.  Similar to the plots available through the NWSRFS (espadp) tool, each 
CDF represent the empirical distribution of i’th day forecast from all traces within all 
ensembles. The difference here is that multiple hindcasts are also available. This plot forms 
the basis for the conversion of the probabilistic forecast into binary-probability forecast, 
which allows the calculation of several verification measures. It must be mentioned that 
while the empirical distributions of forecasts and observations are used in creating the 
verification data set, the actual individual observations are considered as the determinant of 
whether the event (below/above threshold or within a range) has actually occurred. The 
CDF of the ensemble associated with that observations (year, day, or multiple days in case of 
augmented forecasts) is then used to determine the forecast probability. Therefore, one must 
consider the plot in figure mainly as a summary of the hindcasting experiment. Figure 12 
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shows the CDF but when the entire set of ensembles (i.e., 45 ensembles of 46 members 
each) was considered for each forecast day within the analysis period. This figure, on the 
other hand expresses more information regarding the similarity between the observed 
(climatological) and the forecast probabilities.  

Figure 11. Empirical CDF plots for the suit of ensembles for April 1-15 representing 45 ensembles 
(1953-1997) with 46 traces (1952-1997) in each ensemble were used. Notice the sharpness of the 
ensembles’ CDF plots. 

SCREENSHOT 4 

While figure 11 may not be a necessary screenshot, figure 12 below can provide good 
verification information to forecasters. By joining all the ensembles in the re-forecasting 
experiment together, and computing and visualizing their CDFs along with that of the 
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observations, the forecaster can envision, for each day of the forecast, the extent of the 
system’s ability to capture the general shape of the observation’s climatomology (calibration). 
She/he can further discern whether the system is able to forecast events that did not occur, 
which can be indicated by the larger range of the forecasts CDF (discrimination). Needless 
to say, these are only very qualitative measures that must be accompanied by quantitative 
verification measures as will be seen in following sections of this report. 

   

Figure 12. Empirical CDF plots for the suit of ensembles for April 1-15 representing 45 ensembles 
(1953-1997) with 46 traces (1952-1997) in each ensemble were used. All were considered to provide a 
single sample of all possible realization of forecast traces (red: observed, blue: forecast). The 
extended distribution of the forecast CDF relative to the observation CDF indicates the potential 
ability of the forecast system to forecast events that are not within the climatology. 
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III.2 SAMPLE SIZE AUGMENTATION (PREDICTAND SELECTION) 

While the ability to view individual forecasts is important, verification, as mentioned 
above, relies on statistical treatment of multiple forecasts. This means considering the entire 
re-forecasting data set as a single data set, with observations at each forecast point (in time) 
providing a statistical sample whose distribution is compared to the statistical distribution of 
every ensemble to generate a single forecast-observation pair. These pairs are then analyzed 
and verification measures are derived. Nonetheless, visual exploration of these samples can 
yield important information that assists the forecaster in discerning the reasons underlying 
given verification measures. It can also assist the forecaster in determining appropriate 
measures.  The examples presented in section II.1 assume that probabilistic forecasts are 
issued for mean daily flow for each day of the 15 days (probability of flow exceeding or not 
exceeding a given threshold at each day). As such, the size of the verification data set for 
each threshold will only be 45 observation-forecast pairs. The sample size can be augmented 
for short term probabilistic forecasts by considering the probability of average daily flow (or 
discharge) exceeding/not exceeding given probability thresholds during a given interval 
(3,5,7,15,20, and 30 days). Such augmentation, by means of selecting different forecast 
variable is shown in figure 13 for the first instance of each of the 6 periods. The verification 
sample size increases linearly with the size of interval. The effect of such increase on the 
probability distributions of both observations and forecasts can be explored, and in fact, may 
represent the first step toward identifying the appropriate (verifiable) probabilistic forecast. 
Given that at daily scale, it is unlikely that the ESP forecasting system (i.e., the entire 
collection of ensemble CDFs), without additional information such as PQPF, will be capable 
of reproducing the observation climatology (reliability). Nonetheless, a qualitative indication 
of the forecast resolution at daily scale could be obtained by grouping all ensembles 
(hindcast years) into a single sample to represent the distribution of all possible realization of 
the daily flow. It must be mentioned that this approach assumes that the joint distribution of 
the forecast/observation pairs is the same for all days within the interval (Bradley et. al,, 
2004). 

SCREENSHOT 5 

Figure 13, below can also be used a possible screenshot from the verification system. This 
figure is perhaps more important for stage and high-flow forecasts. In such scenario, 
augmenting the sample size is a very reasonable proposition in terms of forecasting the 
probability of a set of threshold stages being exceeded or not-exceeded. Such figure can 
allow administrators to select the forecast variable based on the system’s ability to provide 
calibration and discrimination for a given augmented period of predictions.  
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Figure 13. Empirical CDF plots for 6 temporal intervals (3,5,715,20, and 30) days. Notice the marked 
improvement in the distributions beginning with the 15 day interval. However, differences in the 
distribution continue to be present.  

 

IV VERIFICATION MEASURES FOR ENSEMBLE FORECASTS 

IV.1 INTRODUCTION 

Traditionally, verification of probabilistic forecasts relied on identifying summary 
performance measures such as the brier score in addition to basic evaluation of the 
similarities and differences between the probability forecasts and the observed frequencies of 
forecasted events (Murphy and Winkler, 1992). These scalar measures, while helpful in 
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assisting decision makers in gaining information about forecast uncertainty, did not provide 
the forecasters and modelers with information that can be used to assess specific 
components of the forecasting system. A wide range of performance measures have been 
proposed for verification of probabilistic forecasts. However, as outlined by Toth et. al., 
(2003), because probabilistic forecasts can only be verified in a statistical sense, the stability 
and trustworthiness of any verification measure is, to a large extent, a function of the 
verification data set sample size (number of forecast-observation pairs). While grouping 
several forecasts into a single verification set increases the sample size, it reduce the amount 
of detailed information available on forecasts.  However, for short-term hydrologic 
forecasts, the daily forecasts within the limited size forecasting window are less influenced by 
seasonal signals and grouping them will allow one to sample a wider range of meteorological 
forcing, all of which, can be considered equally likely in the absence of specific probabilistic 
precipitation and temperature forecasts. The latter is important because the limitation of the 
forecasting tools available to this team resulted in ESP experiments the produced ensembles 
which only reflect the effects of initial conditions and the climatological distribution of daily 
precipitation and temperatures as means to generate the probabilistic forecasts. Another 
important limitation of the experiments presented in this report is the fact that they are all 
based on hindcasts that have not been cross validated. As such, while some of the scores 
presented are used in diagnostic manner, they do not present, by any means, a 
comprehensive diagnostic verification of the NWSRFS forecasting system, a task which is 
not within the scope of this project.  

As mentioned above, there are various measures that can be used in the context of 
verifying probabilistic hydrologic forecasts. Murphy and Winkler (1992) described the 
process of diagnostic verification of probability forecasts as analogous to that of regression 
residual analysis in terms of its composition of graphical and quantitative measures that 
attempt to explore various attributes of the probability forecasts. In this framework, the key 
primary attribute of probability forecasts is its statistical consistency between the forecast 
probabilities and the frequency of observing a given event, with two key elements: , (a) 
reliability, and (b): resolution. While the former measures the forecasts ability to capture 
basic aspects of the event’s climatology, the latter measures the forecast’s ability to identify 
events when their frequency of occurrence is different from the climatology. One must 
always remember that in any forecast, the forecast probability is the apriori element, while 
the observations are the posteriori element of the problem. As such, climatology is always 
viewed in the a-priori sense.  In this report, we attempt to adapt their frame work, which 
they outlined in Murphy and Winkler, (1987), to short term probability hydrologic forecasts.  

IV.2 DISTRIBUTION ORIENTED (DO) MEASURES: 

Hashino et.al., (2002), and Bradley et. al. (2003 and 2004), provide an expansive 
treatment of ensemble forecast verification measures based on the Murphy (1997) 
description of DO forecast verification measures. In general, these measures require the 
conversion of the continuous variable probability forecasts into discrete events. With respect 
to ESP, these can be accomplished by identifying given thresholds of the forecast variable 
such as daily discharge, maximum discharge during forecast period, stage, or any desirable 
variable  Qi, where i denotes the current conditions (initial conditions). If one denotes this 
forecast variable as q*, and identifies the probability of none-exceedence  
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where fi  is the probability forecast, and αi is the initial condition. Subsequently, define 
the observation variable oi(q*) as  
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A forecast verification data set for q* can then be developed from hindcasts and 
climatology for the desired forecast period and for both a discrete set of thresholds.  

For each threshold verification data set, the joint distribution of forecast-observation 
h(f,o) can be identified, which includes all the information required to assess the quality of 
ensemble forecasts. Murphy (1996) showed that h(f,o) can be factorized using 
Calibration/Refinement (CR), and Likelihood Base Ratio (LBR) as following 
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Where y and r are conditional distributions and p and t are marginal distributions of the 
forecast and observations. These factorizations allow the computation of several forecast 
quality measures. According to Murphy and Winkler (1987), the conditional distribution 
y(o/f) indicates how often different observations have occurred when the  a given forecast f 
was issued. Given probabilistic Streamflow forecast and definition (1) for a given threshold 
event, the value of y(o = 0/f=0.85) indicates the frequency of threshold being actually 
exceeded in the observation, when the forecasted probability of non-exceedence was 0.85. 
Conversely, y(o = 1/f=0.65) indicates the frequency of the threshold not being exceeded 
when the probability of non-exceedence was about 0.65. Clearly, the ideal forecast would be 
one that accomplishes the following conditions:  
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A perfectly calibrated forecast is one that satisfies E(o|f) =f . The marginal distribution of 
the forecasts p(f) illustrates the frequency distribution of forecasts for the selected threshold 
q*. Sharp forecasts are those which discern certain probabilities and refined forecasts are 
those which cover more or less the entire range of observed frequencies. Murphy argued 
that the worst case scenario is that when p(x|f) =p(x), which implies that the probability of 
event occurrence is independent of the forecast and a climatological probability is being 
forecasted constantly. Such forecasts lack resolution in the sense that they can not forecast 
events outside the climatological probabilities.  

THE RELIABILITY DIAGRAM 

The CR factorization is the basis for two key diagrams (Reliability Diagram, Attributes 
Diagram) that are used in forecast verification. Both diagrams represent the same data. The 
reliability diagram (Figure 14) represents E(o|f) plotted against f  (binned) along with a 
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histogram of  p(f) . Following Hsu and Murphy (1986), the origin of the reliability diagram is 
based on the decomposition of the commonly used Brier performance measure into 
reliability (REL), and resolution (RES) (see Hsu and Murphy for computational details) 

2
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Figure 14. Reliability-Resolution Diagram. The forecast shown has reasonable reliability along some 
resolution. It can also be said that this forecast shows sharpness as indicated by the shape of the 
distribution; in this illustration, the larger majority of forecasts are in the lowermost and upper most 
probability ranges (sub-sample).  

 

Interpretation of the reliability diagram is presented in the figure 15. For a given 
climatologically probability (dashed blue lines), the system has perfect reliability when the 
frequency of event occurring equals the probability forecasts equal for all probabilities. The 
system is under-confident, when for each forecast probability, the event occurred more 
frequently than the forecasted probability. Over confidence occurs when the event occurred 
at lower frequencies than the forecast probability. The no reliability line, which represent the 
climatological frequency (mean or median) frequency of the event occurring. When the 
diagram falls on this line, it indicates that no matter wheat the forecast probability was, the 
event has occurred with frequency equals to its climatological mean. The diagram referenced 
as “Anti Skill” indicate that forecasting system is assigning high probabilities to events that 
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occur at low probabilities and low probabilities to more likely events. Finally, interruptions 
within the diagram indicate that the verification sample size was too small to account for all 
possible probabilities.  

Figure 15. Interpretation of the Reliability Diagram. Considering the diagram summarizes the 
conditional distribution of observations given the probabilistic forecast, each point represents 
the expected frequency of the event occurring given the forecast probability.    

 

Further information about the reliability diagrams could be obtained by plotting, along with 
the actual probabilities, the values of the Brier Score decomposition. Figure 15 illustrates 
these values for the selected forecast. Notice that both the local and global values of 
performance measures are included in said plot. 
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Figure 16. Reliability-Resolution diagram with decomposition of local Brier score values. The 
information contained in the BS-decomposition complements the information in the reliability curve. 
The text on the upper right shows the overall performance measures associated with this forecast. 
Notice skill score “gold solid squares), which is > 0 for all f ranges, with skill declining at the 
climatological probability of the event, but increasing with increasing sharpness. This behavior is also 
demonstrated by the brier score (lower is better).  

 

SCREENSHOT 6 

Figure 16, can be utilized as possible screen to be generated by a verification system. I allows 
the forecaster to monitor, quantitatively, the association between various verification 
measures, the reliability diagram and the system’s performance. This association can be 
further reinforced if supported by figure 15 as a possible “help” illustration. One can 
envision a hierarchy of screen transitioning from simpler, data visualization screens into 
more complex verification measures systematically as well as within few steps. For example, 
forecasters familiar with verification measures can start at their selected choice but then 
move back to individual forecast exploration (Screens 1,2,3, and 4). And in the meantime 
accessing various illustrated help screens. In addition, it is anticipated that most of the 
screens will be interactive, which means that forecasters should select an element of each 
screen and proceed to drill down to more detailed exploration. It is possible that the 
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forecaster may only see, in the beginning the reliability-resolution diagram and the summary 
“overall performance” measures. Through menus the detailed BS decomposition could then 
be added, and the forecaster can utilize the mouse in interactive manner to move over 
various points on the reliability diagram and see the associated decomposition (a vertical line 
going through the right panel and a balloon window showing the numerical values at that 
forecast probability range.      

  

A better understanding of the reliability diagram can be achieved when one considers a 
“bad” forecast. Figure 14 shows such a forecast, which was generated randomly (random 
forecast).  Notice the relationship between the reliability and resolution for all probability 
bins. (i.e., reliability = resolution  skill=0).  Notice also the fact that the Brier score 
fluctuates independently of both reliability and resolution. Finally the lack of sharpness is 
obvious from the p(f), which provides almost equal probability for any possible forecast. 
(The forecast does not say much. It is worse than simply using the climatological mean/or 
median of the observations (p(o = 1)). 

Figure 17. Reliability-Resolution diagram with decomposition of local Brier score values for a random 
forecast.  
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THE ATTRIBUTES DIAGRAM 

The second diagram that is rooted in the CR decomposition is the Attribute Diagram. The 
diagram adds significant amount of information to the reliability diagram, which only 
contains the perfect reliability line (45° line) through additional reference lines. While its 
original formulation (Hsu and Murphy) included many reference lines, in practice, the four 
most commonly used lines are (a)  perfect reliability, (b) no-skill, (c) no-resolution and (d) 
the vertical line where the forecast probability equals the climatological mean of the 
observation or median for variables displaying high value of the skewness coefficient. As 
seen in figure 18, these lines define a shaded region, outside of which the forecasts will have 
no skill. An additional feature of the attribute diagram is the inclusion of textual labels 
representing the frequency of forecasts within each of the probability ranges considered, 
which provides the same information as those in the reliability-resolution diagram. Figure 19 
shows the attribute diagram for the random forecast discussed above, along with the various 
performance measures superimposed (y axis on left). Clearly, the value of the attribute 
diagram is made evident (see figure caption).  

 

Figure 18. Major regions of the attribute diagram. Notice the addition of the regions defining 
negative skill score, which are associated with “Anti-Skill” (Figure 15). Also notice the gray region 
defining reliable forecasts and separating the regions of acceptable “Over and Under Confidence”. 
Although it seems more complicated, the attribute diagram adds the interpretation of the reliability 
diagram and provides the resolution histogram in numerical values (See Figure 18 below) 
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Figure 19. Attribute diagram for random forecast. Performance measures, which are not part of the 
diagram are superimposed with right value axis to illustrate the regions of the reliability diagram. 
Notice the presence of resolution information (numbers representing the histogram of (f). Also 
notice that for points of the reliability plot (red line and open circles), which fall outside of the 
shaded region, the corresponding values of the skill score are negative. Notice also that points where 
the reliability (blue) and resolution (magenta) intersect fall on the no skill line with the actual 
frequency curve (red) being very near the no resolution line.  

 

IV.3 SPECIFIC ESP-CONSIDERATION  

With respect to ensemble generated probabilistic forecasts, minor deviations from the 
diagonal “perfect reliability” line of for a given verifying data (observation) are not essentially 
due to lack of forecast performance in the probabilistic sense. Murphy and Winkler (1992) 
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and Toth et. al (2003) argue that by randomly replacing the verifying analysis (observation) 
with one ensemble trace, one could identify the attribute of a “near perfect” forecast given 
the forecasting system. From ESP point of view, instead of selecting a random trace, the 
selection of the “Historical Simulation” as a verifying analysis provides the basis to 
determine the best possible performance of the system, while eliminating the effects of 
model errors on the verification. By comparing the two verifications (observation based vs 
historical simulation), the forecasters as well as the administrators can identify whether 
model improvements are likely to substantially improve the forecasting system. Figure 20 
shows such a comparison. In the figure, the attribute diagram shows both historical 
simulation and observation attributes (center bottom panel). The resolution histogram 
(center top panel) and the decomposition of Brier scores for both historical simulation (left 
bottom panel) and observation (right bottom panel) as well as the associated overall 
performance measures (left and right of top panel) 

Figure 20. Referencing attribute diagram with historical simulations for April 1-15 (blue line in the 
attribute diagram) in order to discern forecasting system performance. In this case, both forecasts 
and historical simulations were generated using the NWSRFS, but the verification data set was 
augmented by considering multiple probability thresholds (0.1,0.2,0.3,……0.9), which explains the 
near 0.5 mean of observation. Examples associated with individual probability thresholds will be 
presented later. Notice the better values of Brier Score, and Skill Score when historical (top-left table) 
simulation is considered. However, notice the reasonable performance compared to observations as 
well.  
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SCREENSHOT 7 

Figure 20 also represents an alternative verification system screen to screenshot 5. The main 
benefit of this screen would be to provide the means for better interpretation of the 
reliability diagram by using the attribute diagram instead, which provides the gray range 
delineation of the reliability and skills regions. Again, the screen can be made interactive with 
increasing level of complexity as the forecaster/administrator goes through the process of 
drill-down through more details. It must also be mentioned that this screenshot must be 
available at every threshold probability range or in case of stage and peakflow forecasts, at 
every critical stage and discharge chosen by the forecaster. Comments received during our 
verification workshop seminar indicate that such screen may be a little too complex for 
verification/validation objectives. While we agree with these comments on principle, we 
believe that such screens must be available through any forecast verification to provide for 
detailed verification of both probabilistic and deterministic forecasts. The historical 
simulation may replaced with a simulation based on optimized model stated.(please see 
recommendation section)  

 

IV.3 EXAMPLE  

Figure 21 below, shows the detailed attributes plots for 9 different thresholds. All plots 
were generated for the case study described above (April 1-15, 45 ensembles with 46 traces 
in each ensemble). It must be mentioned that these figures could also be replaced, for a 
given threshold, by an evolution of forecast attributes with verification of recent forecasts. 
Furthermore, figures 22 and 23, show the Brier score decompositions for all thresholds and 
for observation and historical simulations. Therefore, all can provide detailed information to 
forecasters at a very substantive drill-down level. Yet, at the same time, they provide a full 
summary of the entire hindcasting experiment.  

SCREENSHOTS 8, 9, and 10 

Figure 21, when provided through the verification system allows the 
forecaster/administrator to visualize the attributes of forecasts for all thresholds selected 
during the verification. One can also switch between figure 21 and figures 22, and 23 to 
obtain more details on the entire verification data set both for observation and historical 
simulation. The ability to visualize the scores, when the ensemble is compared against the 
historical simulation provides the “best” possible performance of the system. A help screen 
that includes figure 15 can guide the forecaster in interpreting the diagrams appropriately.  
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Figure 21. Sample exploration of forecast attribute for various thresholds. Notice the evolution of 
the forecast attribute with lower probability thresholds lacking skills and improved skills for higher 
probability thresholds. Two thresholds are notable, particularly when observation-based verification 
is compared with historical simulation verification. These are 0.5 and 0.7. However, at higher 
probability threshold (starting with 0.4) the reliability diagram shows a reasonable reliability. One 
must recall that this diagram is based on augmented sample of 15 days.  
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Figure 22. Sample exploration of forecast skill and verification measures for all considered thresholds 
when forecasts are verified against observation. The lines drawn are similar to those in figure 20, which 
include the Brier Score (green), reliability (blue), resolution (magenta), and skill score (gold). The 
dashed red and black lines represent the (0,1) interval which indicate reasonable range of some of these 
measures. Notice the interruptions caused by the smaller data set, or the inability of the forecasting 
system to address all possible probability ranges particularly at threshold=0.1. Also, notice the 
improved performance at threshold probabilities 0.8 and 0.9, indicating system’s ability to forecast 
events with low non-exceedence probabilities. This figure is a supplementary screenshot to figure 21. 
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Figure 23. Sample exploration of forecast skill and verification measures for all considered thresholds 
when forecasts are verified against historical simulations. The lines drawn are similar to those in figure 
20, which include the Brier Score (green), reliability (blue), resolution (magenta), and skill score (gold). 
The dashed red and black lines represent the (0,1) interval which indicate reasonable range of some of 
these measures. Notice the lower number of interruptions in comparison to figure 22. Also, notice that 
in most cases, the system verifies better against historical simulations than against observations. This 
calls for incorporating alternative methods (e.g., optimized model states) in the generation of hindcast 
as well as ESP forecasts. This figure is also a supplementary screenshot to figure 21. 
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THE ROC CURVE 

Figure 24 is similar to figure 20 for a given threshold, but the resolution diagram has 
been replaced by the summary overall performance measures, and two new diagrams are 
shown on the top left and right panels representing ROC (Receiver Operating Characteristic) 
curves for both historical simulation and observations. ROC curves were originally 
developed to assess the performance of signal detection classifiers. The key objective of 
ROC curve is to visualize the trade off between hit rate and false alarm rates (Egan, 1975). 
ROCs are based on contingency tables and on the LBR factorization, which also form the 
basis for the classical Brier score. For given a forecast, the observations of an event, which 
could be defined by probability thresholds (non-exceedence or exceedence), take the value 
of 0,1 based on whether it occurred or not. The ensemble based probabilities are then 
treated as scores assigned to forecasting the event. An observation/forecast contingency 
table (dichotomous) is determined by specifying the decision threshold (e.g. changing the 
probability level at which an event is forecasted to have occurred or not). Each change of the 
probability threshold results in a new contingency table, which is then translated into a point 
on the ROC curve. Figure 25, shows the main characteristics of an ROC curve. Thresholds, 
also known as cutoff, increase from the (1,1) corner, which represents the scenario when a 
positive forecast is always issued. The (0,0) corner is associated with a forecast that is never 
positive. The diagonal represent the case when FAR = HR, or in other words, a random 
forecast. 

Figure 24. Sample detailed exploration of forecast attribute for a given threshold (0.7). The 
two ROC (Receiver Operating Characteristics) curves are based on the classical contingency 
table.  
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Figure 25. Construction of ROC curve. In practice, the ROC curve will not be as smooth as 
those shown in the figure, but better performance is associated with convex ROCs. Poorer 
discrimination is associated with ROC curves that alternate frequently between convex and 
concave shape, with both large and small concavities present in the overall shape. In addition 
to the visual interpretation of ROC, it is possible to also use the Area under the ROC curve 
as a measure of performance. When ROC Area < 0.5 the system has anti-discrimination 
(associated with the gold line). When the area = 0.5, the system is no better than a random 
forecast. As the area increases reaching 1, the system has better discrimination.  

 

ROC curves are a very valuable verification tool, particularly when the verification 
sample size is small, or when the forecaster needs to make probabilistic forecasts for low 
frequency events (e.g., flood stage). For example, consider the probabilistic forecast of the 
event with the 0.7 climatological nonexceedence probability occurring during the period 
April 1-7. The forecast attribute diagram, shown in Figure 26 for both historical simulation 
and observations gives the forecaster the impression that her/his forecast is not reliable. 
However, when considering the ROC curves, it seems that within the possible ranges of 
cutoffs, the forecasting system provides a reasonable discrimination.  

The above-described measures of performance provide substantial information regarding the 
forecasting system. As mentioned repeatedly in this report, there are numerous verification 
measures, but the ones described herein are specifically tailored to ensemble probabilitistic 
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forecasts. Other measures were discussed in details by Bradley et al. (2002), In addition, the 
above-referenced verification team report provides a well thought list of deterministic and 
probabilistic measures. We attempted to focus on few but powerful measures, particularly 
those that can be visualized, explained, and  above all interpreted within a short period of 
time. In the next section, we attempt, based on our communications with several forecasters 
to consider the key operational requirements for real-time short term probabilistic forecast 
verification approach. Needless to say, even in realtime, probabilistic forecast verification is 
always a diagnostic affair. It is not expected that the forecaster will adjust the hydrologic 
model in realtime based on the diagnostic verification. But it may be possible to adjust other 
factors including the choice of weights, probability distributions, and verification data sets. 

Figure 26. ROC curves can provide valuable verification information when the sample size is 
small, or when the attribute diagram is not very clear. The above combination represents a 
thorough, yet, reasonably easy to interpret verification. Forecast is the 0.7 probability of non-
exceedence for April 1-7. Notice that both possible verification data sets show reasonable 
discrimination. The observation shows more concavities in the diagram, but the ROC is 
within appropriate range. Notice also the discontinuity in the reliability ,Brier score, skill score, 
and resolution curves. These are related both to small sample size as well as failure to account 
for initial conditions appropriately during the hindcast procedure (See figures 7 and 8).  
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SCREENSHOTS 11 and 12 

Figures 24 and 26, which represent the same information, form the basis for the most 
detailed and comprehensive visualization of formal verification metrics. The screenshots 
include the attribute diagrams for the forecast being verified against both observation and 
historical simulation, the decomposition of the Brier score both in overall (across all forecast 
probabilities for the selected threshold), as well as the detailed probability forecast values of 
the brier score and its decomposition (Calibration/Refinement). The likelihood base ratio  
decomposition is also present in the form of the ROC plots for both observed and historical 
simulation based verification. Forecasters and administrator are likely to utilize this part of 
the future forecast verification system after they become familiar with the simpler screens 
described above. 

 

 

V DETERMINISTC VERIFICATION MEASURES 

V.2 VERIFICATION FOR CONTINUOUS VARIABLES  

Many times in this report we mentioned the need to verify using both observations and 
historical simulations. This is mainly because of the significance of historical simulations 
initializing ESP hincast experiments. In addition, during several discussions with various 
RFCs and with members of the NWS-verification team, the need to illustrated some 
deterministic forecast verification measures were discussed. In this section we provide 
example screen shots for deterministic forecast verification measures. We use the historical 
simulation in this context because we believe that it is important to verify the historical 
simulation as a stand alone deterministic forecast. This was illustrated for a given hindcast 
year in figure 10, and screenshot 3. In figure 27, we consider all forecast years and compute 
verification statistics in manner similar to that of figure 10. The represents the two forecast 
and observations as continuous variables. As seen in the figure, Notice that for the very high 
flow year, the forecast (historical simulation) performed well as well as for other years with 
high flow. It is possible that focusing on the RMSE during model calibration may have 
contributed to that. However, from ESP hindcast generation point of view, capturing the 
initial conditions and model states in both high and low flow years is very important. 

SCREENSHOT 13 

Figure 27 represents a possible screenshot for the deterministic forecast verification of the a 
verification system. The figure includes 4 panels. A summary of formal verification panel 
(top -left), a time-series plot of observed and predicted (top-right), a scatter-gram with the 
size of dots dependent on the relative magnitude of error, and finally a standard conditional 
quantile diagram. Although the figure helps the forecaster/administrator in determining the 
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level of errors in the historical simulation in ESP context, it is valid for any deterministic 
forecast.  

 

 

Figure 27. Possible graphical representation of deterministic verification component of the 
verification system. In this case, the historical simulations for April 1-15 are all verified against 
their paired observations. The top-left panel includes many of the verification measures 
proposed by the NWS-verification team. The top right panel shows the observation (red-dots) 
and historical simulation (blue dots) for each of the forecast years. The bottom-right panel is a 
revised version of the classical scatter-plot with the size of each “bubble” being determined by 
the relative magnitude of the error (Abs(Obs-Pred)/Obs). Notice that for the very high flow 
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year, the forecast (historical simulation) performed well. As well as for other years with high 
flow. It is possible that focusing on the RMSE during model calibration may have contributed 
to that.  

V.2 VERIFICATION OF CATEGORICAL FORECASTS 

In many cases, both deterministic forecasts and probabilistic forecasts are issued in the 
form of categorical forecasts. With respect to multi-categories probabilistic forecasts, the 
verification approach is identical to the binary case, with thresholds being replaced by 
categories. Reliability, attributes, and ROC diagrams along with Brier score decomposition 
remain valid. However, when both forecasts and observations are strictly categorical (i.e., 
event occurs or not, or forecast stage to exceed certain level or be within levels), other scores 
become available. These include the the Heidke Skill Score, the Pierce Skill Score, the 
Gerrity Score, and the Threat Skill score along with the FAR, and Hit Rate.  

 

Figure 28. Categorical verification measures for deterministic forecast (April 1:15). Notice the 
benefit of having the structured contingency table along with the scores. Notice also the 
correspondence between the time-series plot and the fact that the hit rates for the higher 
flows is reasonably high (0.858).   
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SCREENSHOT 14 

Figure 28 represents a possible screenshot for the deterministic/categorical forecast 
verification of the a verification system. The figure includes most of the relevant metrics 
considered by the NWS-Verification Team. The combination of graphical and textual 
representations of the contingency table should allow the forecaster/administrator to better 
interpret the skill scores available in the panels. In addition having both the time-series and 
the scatter plot will provide the detailed (drill down) information many forecasters are 
accustomed to.  

 

 

VI OPERATIONAL CONSIDERATIONS 

Welles (2005) emphasized that the objective of administrative verification of 
deterministic river stage forecasts is to determine: 

1. How does the performance of the actual forecasts compare to the performance 
of persistence forecasts? 

2. How does the forecast performance change with lead time 

3. How does the forecast skill change with time 

Answering these questions is critical to the mission of any operational forecasting agency. It 
requires a long-term archive of actual forecasts. Note that ESP reforecasts may address (1) 
and (2). Alas, no long-term archive of actual ESP forecasts exist for several reasons 
including:  

(1) Recent implementation and continuing evolution of ESP procedures at RFCs 

(2) Lack of archival procedures of actual ESP forecasts in their numeric (ensemble) 
format. 

Clearly, in the near-term, any serious verification of ESP forecast will rely heavily on 
conducting hindcasts similar to those presented in this report. In fact, the NWS verification 
team has clearly identified the need for both a verification system and thorough system wide 
verification capability. They provided detailed description of the major requirements of such 
system, which includes both deterministic and probabilistic verification capabilities. The 
Report  also identifies a suite of verification measures and our team will work with the 
verification team on providing graphical examples of some these measures in order to 
emphasize the needs for data exploration capacities within the anticipated verification 
system. While the data reported in this report is by no means comprehensive, or sufficient, it 
points to a serious issue that must be addressed in developing operational procedures for 
real-time verification of short-term ESP forecasts. In addition, until the utilization of PQPFs 
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(ensemble) becomes a standard operational procedure in ESP, short-term forecast 
performance as a function of lead times is of less concern that that of selecting the 
appropriate predictand, which is verifiable. A second complicating factor is the apparent 
disconnection between the hindcasting procedure and tools available and the actual 
operational utilization of ESP tools. On the one hand, some modifications implemented by 
the forecaster are by default included in her/his ESP forecasts. The hindcasting procedure 
does not allow for the historical record (even if it exists) of these MODS to be incorporated. 
Therefore errors in model carryover states that may have been corrected by MODS may 
exist in the initial conditions of the hindcasts, causing bias in the distribution of the resulting 
ensemble that would not have been present in the real time ESP.  

Therefore, real-time operational verification of short term probabilistic forecasts must take 
into account that the verifying hindcast data is not necessarily an accurate representation of 
the system or of the forecaster’s skill. The size of the verifying data set must then be 
augmented through procedures such as focusing on flood stage (action, flood, major flood) 
events thresholds, which allows for a suite of forecast points within a given forecasting 
group to be lumped in one verifying data set. Selection of verifying data set needs to take 
into account factors such as: 

1. Similarity with current conditions (e.g., snow pack, meteorological conditions, 
current stage). Fore example, the forecaster can widen the verification data by 
considering all forecasts issued on days with similar, as well as hindcasts initialized on 
such days. This will replace the standard hindcasting procedure, which relies on  
calendar dates by a system that has the ability to query the historical data and select 
larger sample, but within reasonable seasonal and short-term conditions. 

2. Skills or exploratory analysis of recent ESP forecasts. This will allow the forecaster to 
identify, within reasonable time window, the discrepancies between recently issued 
ESP forecasts and their corresponding observations.  

As mentioned above, it is not expected that the forecaster will adjust the hydrologic 
model in realtime based on the exploratory analysis of recent forecasts or even based on 
diagnostic verification of hindcasts. However, a verification procedure that accounts for 
current conditions will allow the forecaster to better identify appropriate probability 
distributions, as well as probability ranges. Figure 22 shows a conceptual vision of the 
relationship between verification system and the current operational NWSRFS.  

As mentioned above, the current implementation of hindcast generation does not 
account for modifications and adjustments made by forecasters. It is our belief that re-
forecasts will always be an integral element of hydrologic verification system. And as such, 
alternative approaches to establishing model initial conditions must be identified that 
attempts to capture, to the most possible extent, the effects of forecasters’ judgment on the 
initial conditions of hindcasting experiments. This can be accomplished through verities of 
techniques including (a) integrating data assimilation or filtering tools into the hincast 
generation tool, (b) creating an alternative “historical simulation” with optimized initial 
conditions, and (c) maintaining an archive of “historical” optimized model states that can be 
generated during the re-calibration process, among many.  This is consistent with the 
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conclusions arrived at by the NWS verification team (Gabrielsen et. al, 2006 Draft 
document).  

      

Figure 29. Possible relationships between verification system and real-time/short term 
operational ESP forecasts. Notice that we not only propose establishing archives of ESP and 
recent forecasts, but also highlight the need to connect these archives with the ESP 
generation tools and verification tool.  

As seen in the figure, an envisioned (idealized) operational procedure will consist of the 
following steps 

1. In advance, conduct hindcasts (365 days for the period of record). Whenever 
possible include MODS into the hindcasts, as well as historical data, and /or PQPF. 
Hindcast procedure should emulate the actual forecasting procedure, whenever 
possible. Initially, this may have to be conducted manually, or tools that integrate 
actual carryover, MODS into the ESP procedure, as well as optimized model states. 
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Hindcasts must be saved not in their probabilistic or graphical formats, but in a 
format that includes the full ensemble information in their raw format or in flat ascii 
files (for ease of possible integration with R statistical package) 

2. In advance, archive operational ESP, using the same format as above, making sure to 
archiving full ESP ensemble files rather than derived graphical products or 
exceedence information. 

3. Perform deterministic standard simulations and subsequent ESP runs for the desired 
duration 

4. Query, manually or automatically, dates with similar conditions (procedure needs to 
be established for criteria of similarities) 

5. Query ESP-hindcasts for classical hindcasts as well as those for similar conditions 

6. Perform verification, if needed during verification adjust  

a. Probability distribution (normal, empirical, others) 

b. Weights of ensemble members (Werner, 2004) 

c. Forecast probability ranges 

d. Predictand (the variable being forecasted) 

7. Once satisfied with obtaining best verification measures, apply above adjustments to 
current ESP traces, and issue probabilistic forecast. 

 

VII. REVIEW OF RIVER FORECAST VERIFICATION DRAFT 
REPORT 

This review was conducted after several discussions with members of the NWS-
verification team. We have exchanged drafts of our reports in order to ensure that the work 
of this team is both consistent and complimentary with the verification strategy adopted by 
the NWS.  

VII.1 GENERAL COMMENTS 

Overall the document looks great. It looks like the team really understands the diverse 
uses of verification, the importance of archiving information, and using a variety of metrics 
to assess the multi-dimensional nature of forecast performance. There are, however, several 
additional points to consider. 
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VII.2 CRITICAL ISSUES 

The Reliability and Discrimination diagrams should be included in the National Baseline 
Verification System (NBVS). These diagrams are the most informative graphics for 
evaluating forecast performance. They are being used for climate outlook evaluation by the 
Office of Climate, Water, and Weather Services (R. Livezey, Climate Services Division, 
personal communication, 2006), and Franz et. al (2003) demonstrated that these diagrams 
can verify that hydrologic ESP forecasts contain real information when other metrics can't 
see it. Experience in conducting training workshops on forecast verification (e.g., Hartmann, 
2005, 2006) has established that these concepts are not difficult to understand, and provide a 
natural lead-in to concepts of Bayesian estimation and adjustment. 
 

Also, the team has it exactly backwards when it comes to comparing deterministic and 
probabilistic forecasts. Rather than converting probabilistic forecasts to deterministic form 
(ignoring the essential information provided by the probabilistic forecast), it's more 
appropriate to convert the deterministic forecasts to probabilistic form. The deterministic 
forecasts were never without uncertainty; it was just typically not communicated. The 
deterministic forecasts can, relatively easily, be converted to probabilistic form by overlaying 
an estimated error distribution around the deterministic forecast value. An easy and 
reasonable error distribution comes from the calibration statistics. The seasonal water supply 
outlooks have already been issued in this form for years (with their 90,70,30, and 10% 
exceedance quantiles). Even though a lot of people are using the median of the probabilistic 
ensembles, it doesn't mean the approach is correct -- it's not correct. Let's recognize that the 
deterministic forecasts always did have a probabilistic interpretation and compare them on 
that basis. Let's not throw away the whole purpose behind probabilistic forecasts, especially 
considering how much more 'expensive' they are to support.  
 

VII.3 OTHER ISSUES 

On pages 21/22, there's mention of a flexible verification system that would let a user 
define the statistical variable of the forecast to be verified. Then it mentions, as examples, 
the mean, median, maximum or minimum value during that time interval. While that's ok, 
the phrasing suggests that, again, the team may have missed the key contribution of 
probabilistic forecasts and their essential nature. That is, evaluating a specific value using 
metrics designed for deterministic values is inappropriate. Instead, the flexibility should be 
achieved by creating a system that reinforces the proper interpretation and application of the 
forecasts (i.e., making tradeoffs between forecast confidence and the range of values). We 
suggest phrasing along the lines of "flexible selection of parts of the forecast or observation 
distributions, e.g., allowing users to specify probability and variable intervals, or to specify 
low-flow thresholds".  
 

It would be helpful to stress the benefits of considering the distributions of model inputs 
and state variables as part of verification (i.e., validation). It would be useful for forecasters 
in assessing the realism of specific ensemble traces to be able to visualize where the model 
inputs and state variables lie within their own historical distributions. Those historical 



 45

distributions may be based on observations (model inputs) or simulations (internal state 
variables).  

Other visualizations should be considered part of forecast validation as well. First, the 
concept of visualizing the forecast system status relative to each component’s historical 
distribution should be extended to forecaster run-time MODS, enabling each forecaster to 
build their own archive that, over time, reflects their tendencies and helps place any real-time 
MODS choices in perspective with their past choices. Second, the forecasters should be able 
to visualize the evolution of operational forecasts for a common forecast period, i.e., as the 
lead-time diminishes.  

In the section on the "Review of the available verification tools", Table 3 lists a series of 
projects and then the supporting text says, "These existing projects will be used to define all 
the RFC hydrologic verification system requirements." This sounds like there's no place for 
any activity outside these projects. Is that correct? The report mentions the need for research 
activities in several places, but it would be useful, from an academic perspective, for the 
report to explicitly state somewhere (probably in this section) that there is a recognized need 
for external research and partnership research.  
 

Finally, the report represents an important effort on the part of the Verification Team 
and the NWS. It's exciting to see that the Hydrology component of the NWS is on track to 
make a real commitment to verification. Now it will come down to how much of a 
commitment the NWS can really make, and with how much flexibility and openness to 
outside participation. 
 

VIII. RECOMMENDATIONS 

 

VIII.1 GENERAL RECOMMENDATIONS 

 
1. Hydrologic verification is vital, viable, and possible. Both probabilistic and deterministic 

hydrologic forecasts can and must be verified.  
 

2. Hydrologic forecast verification must be conducted in the terms by which the forecasts were 
created. This requires that researchers become knowledgeable of operational forecasting 
procedures. 

  
3. Mechanisms should be developed to facilitate bidirectional technology transfer, which 

includes the transfer of operational forecasting technologies to the research community.  
 

4.  A survey of all RFC forecasters should be undertaken to identify field 
priorities and areas where training is required. A suggested survey is included in 
this report. 
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NWSRFS-VERIFICATION TOOL 

1. Probabilistic forecast paradigm must have equal weight in operational procedures as 
deterministic forecasting paradigm.  

 
2. Tools to generate probabilistic forecasts must be integrated into the standard operational 

forecasting tools (IFP_Map). 
 

3. Operational ESP verification/validation tools should: 
a. allow for visual inspection of the data  
b. Incorporate a hierarchy of forecast verification measures with option for increasing 

complexity. 
c. be dynamically linked to both ESP archives, and to ESP generation tools 
d. incorporate means to conduct conditional verification (e.g., similar initial conditions, 

weather patterns, snow cover conditions) 
 

4. ESP re-forecasting tools must be linked to MODS, QPF, and operational input archives 
 

5. Hydrologic verification tools must be able to jointly address and compare both probabilistic 
and deterministic forecasts. However, when comparing performances, probabilistic forecasts 
should not be converted into deterministic forecasts, rather, the uncertainty bounds around 
the latter will provide for means to address them in probabilistic form. 

 

DATA REQUIREMENTS 

 
1. Maintenance of ESP forecast archives along with archives of MODS and model states 

(carryover) files is essential to ensure that verification is carried out in manners consistent 
with forecast issuance. 

 
2. There is a need to establish alternatives to ESP historical initial condition that better 

simulates forecasters behavior (see section).  
 

3. Sample size issues must be considered in probabilistic verification studies.  

 

 


