Flash Flood Modeling Using the DHM-TF Approach *Current Status and Future Plans*

Brian Cosgrove, Seann Reed, Ziya Zhang, Victor Koren, and Mike Smith NOAA/NWS/OHD

nnao

Distributed Hydrologic Model-Threshold Frequency (DHM-TF) Approach

- DHM-TF system: Combine a distributed hydrologic model with a threshold frequency post-processor to improve flash flood forecasts at ungauged locations
- DHM produces gridded <u>flow forecasts</u>, from which gridded <u>frequency forecasts</u> are derived using historical simulations
- Historical simulations are conducted using DHM and same type of forcing data used in forecast simulations to maintain consistency
- Threshold frequency grids are derived from local information and compared with frequency forecasts for flash flood determination
- Sacramento with kinematic routing used in OHD's implementation, but any hydrologic model can be used

DHM-TF Motivation

- DHM-TF is able to predict flash flooding at ungauged locations
- System provides inherent bias correction to model flow predictions (concept that the relative rank of events—and therefore frequency—can be well-simulated even if the flow is biased)
- Superior to standard flash flood guidance
 - Computed at 2km to 4km resolution versus > $260km^2$ basin scale
 - Can be updated every 15 minutes versus 1 to 6 hours
 - Produces verifiable small basin flow estimates

DHM-TF History

- 2003: Threshold frequency concept advocated at DOH workshop
- 2003: Concept expanded and initial development of software
- 2004: Statistical flash flood modeling paper presented at AMS
- 2006: DHM/QPF flash flood prediction paper presented at AMS
- 2006-2007: DHM-TF simulations conducted over Oklahomadomain, work is published in Journal of Hydrology
- 2007: Discussions with Sterling WFO concerning use of DHM-TF
- 2007: Maryland case developed to support Sterling WFO transfer
- Now: Brian Cosgrove takes over DHM-TF work

DHM-TF Overview

*Cycle automatically repeated every hour in current setup *Can be set to update forecast run every 15 minutes, using more HPE and less MPN data

DHM-TF Maryland Pilot Project

- Maryland area well-suited for implementation of prototype DHM-TF
 - HPE/MPN prototype currently running over this region
 - Includes Baltimore, a well-studied, high profile, flash flood prone area
 - Local basins, MARFC, and Sterling WFO are accessible for site visits
 - Large number of stream gauges are available in Baltimore County for validation
 - Mix of urban and suburban areas
- Using MARFC MPE precipitation data for historical simulations

Current: 4 km model with 28 outlets defined

Planned: 2 km model with 12 outlets defined

Maryland DHM-TF Case Study

Maryland: 5/9/2008 1-Day Observed Precipitation Valid at 5/9/2008 1200 UTC - Created 5/12/08 19:13 UTC

Multiple rain events, May 9th-12th, 2008

 Several flash flood warnings issued by Sterling WFO for Washington DC and surrounding counties on May 9th

 Tornado warnings for Prince Georges and Charles Counties in Maryland

Maryland: 5/12/2008 1-Day Observed Precipitation Valid at 5/12/2008 1200 UTC - Created 5/14/08 10:32 UTC

Maryland Case Study: May 12-13 2008

Assessing the Inherent DHM-TF Bias Correction

(Are flow ranks and frequencies correct even if flow magnitudes are biased?)

• Supports concept that frequency is wellsimulated even if flows are biased

 Potential exists for implementing DHM-TF approach even if model is not well calibrated Compute peak flow adjustments at gauged validation points using observed and modeled flow frequency distributions

Bias Correction of Precipitation

Bias detected in MARFC MPE archives prior to 2004
Bias corrected precipitation needed to support unbiased simulation statistics for a reasonable historical period (~9 years)

•Analysis of Monocacy River flow shows reduction in cumulative bias and improved consistency when bias corrected precipitation is used

• Consistent bias can be removed through calibration or through DHM-TF approach

Bias Correction of Precipitation

Monthly RFC MPE Precipitation 03/97 (mm)

25

20

Monthly PRISM Precipitation 3/97 (mm)

RFC Hourly MPE Precipitation 03/01/97 12z (mm)

Monthly Bias (ratio)

Adjusted RFC Hourly MPE Precipitation 03/01/97 12z (mm)

Yu Zhang

Impact of Precipitation Bias Correction

Monocacy River Flow: April 12 through June 11, 2003

Prototype Tools Available from the DHM-TF Project

New HL-RDHM routines needed for DHM-TF approach

monthlySum: generates gridded monthly total precipitation

- xmrgAdjust: bias corrects hourly precipitation data with PRISM
- AnnPeaks: produces annual grids of maximum peak discharges
- FreqParams: reads annual peak files, computes frequency distribution at each grid cell and outputs distribution parameters
- getMaxRet: computes maximum discharge and return period during forecast period
- GRASS and GrADS scripts for visualizing input and output
- Cron scripts for real-time prototype
- Full set of DHM-TF components available through the LAD by mid-August

Future Work

- Reestablish real-time experimental DHM-TF runs at OHD
- Increase run resolution to 2km (1/2 HRAP)
- Add Snow-17 into prototype DHM-TF system
- Finish creating graphical tools and scripts needed for output visualization at RFCs and WFOs
- Finish comprehensive documentation of DHM-TF
- Define requirements for operational development
- Coordinate with Sterling WFO on implementation of experimental DHM-TF system
- Continue to bias correct MPE precipitation with PRISM data (Hydromet Group)