

# **HydroXC Workshop Session**

# HydroXC Schema 3.0: Sub-Schemas Preview

#### Presented by:

Jon Roe, NOAA Office of Hydrologic Development Dr. Michael Piasecki, Drexel University Stephanie Liu-Barnes, Apex Digital Systems

March 22-23, 2007



#### **Meeting Agenda**

- Welcome
- HydroXC 3.0: Sub-schema Preview
  - HydroXC General Schema Objectives
  - Existing Schema Review
  - GeoReferencing: Geographic Markup Language (GML)
  - National Hydrography Dataset (NHD)
  - Sub-schemas
- Next Steps
  - Data Adapters
  - Website
- Open Discussion



# **HydroXC General Schema Objectives**





#### **Existing Schema Review: Schema 2.0**

- General structure for basic hydrologic data
  - Generic data containers
  - ➤ Structured to allow for data format definitions paired with a set of data values
  - ► Meant to be able to support any type of hydrologic data, but with required thought to definition with every instance
    - No object-specific sub-schemas
- Documented only in Visio
  - ► No schema (.xsd) file
- ➤ Based on data samples provided by NOAA (OHD and RFCs), USGS, and Duke





#### **Existing Schema Review: Limitations**

- Need georeferencing structure
  - The schema does not contain a section that would relate the data collected or computed at a specific point to a coordinate system that in turn would be referenced to a vertical datum and specific projection.
- Need a link to the referencing system used by the National Hydrographic Dataset (NHD)
  - ▶ This is incorporated within the Geography Markup Language (GML) and in other schemas.
- Need more precise and standardized time referencing
  - ► Example: The existing version uses "the nearest year", which works for NOAA's SHEF format but is much too vague for most other applications. We suggest to incorporate a time reference standard like ISO 8601 conventions.



#### **GeoReferencing: Geography Markup Language (GML)**

- Need a Spatial Reference System (SRS)
- Several choices:
  - Latitude/Longitude, projection, vertical datum
  - Local Coordinate System (State Plane COS)
  - Universal Transverse Mercator (UTM), => X, Y [meters] plus Northing/Easting
- European Petroleum Survey Group (EPSG) code list. EPSG is now part of the Int'l Association of Oil and Gas Producers (OGP)
  - EPSG:4326 = WGS84 <u>latitude/longitude</u> coordinates in degrees with <u>Greenwich</u> as the central <u>meridian</u>.
  - EPSG:26917 = NAD83 UTM Zone 17
- Points, Line, Line String, Polygon



#### **GeoReferencing: GML Examples**

Point e.g. station

```
<gml:LineString gml:id="line1" srsName="urn:ogc:def:crs:EPSG:6.6:4326">
    <gml:posList>45.67 88.56 55.56 89.44</pml:posList>
    </gml:LineString >
```

Line e.g. river channel



GeoReferencing: HydroXC Schema 3.0





#### **GeoReferencing: HydroXC Schema 3.0**





# GeoReferencing: HydroXC Schema 3.0





#### **GeoReferencing: Example of GML Conventions in HydroXC**

```
- <Report Name="Perennial River" ID="0128071057" Count="1">
 - <CoverageSet Count="1">
    <Coverage Count="1" ID="788012" Name="River Channel">
      <LocationSet Count="1">
         <LocationDataElement Count="1" ID="1345" Name="Channel Path">
           <LocationArrayDefinition ID="9841" Name="Curve">
              <Item Name="latitude1" DataType="real" />
              <Item Name="latitude2" DataType="real" />
              <Item Name="latitude3" DataType="real" />
              <Item Name="longitude1" DataType="real" />
              <Item Name="longitude2" DataType="real" />
              <Item Name="longitude3" DataType="real" />
              <Item Name="srsName" DataType="String" />
           </LocationArrayDefinition>
           <LocationDataArray Count="1">
              <DataElement>
               <Item Name="latitude1" Value="45" />
               <Item Name="latitude2" Value="45.3" />
               <Item Name="latitude3" Value="46.1" />
               <Item Name="longitude1" Value="-83" />
               <Item Name="longitude2" Value="-82.2" />
               <Item Name="longitude3" Value="-82.7" />
               <Item Name="srsName" Value="urn:ogc:def:crs:EPSG:6.6:4326" />
                                                                                  A Curve Section
```



### **GeoReferencing: Standard Hydrologic Exchange Format (SHEF)**





#### **Public**



#### **National Hydrography Dataset (NHD) Referencing**

Federal Geographic Data Committee (FGDC) Framework data model uses references to National Hydrography Dataset (NHD) to describe Stream-Reaches.

- + arbolateSumKm: Real
- + divergenceFlag: Integer
- + downstreamDrainCount: Integer
- + downstreamDrainLevel: Integer
- + downstreamLevelPathId: Integer
- + downstreamMinorHydrologicSequenceNumber. Integer
- + drainStreamLevel: Integer
- fromNode: Integer
- hydrologicSequenceNumber: Integer
- + levelPathId: Integer
- + pathLengthKm: Real
- startFlag: Integer
- streamOrder: Integer
- terminalDrainId: Integer
- terminalFlag: Integer
- + thinner: Integer
- + toNode: Integer
- + upstreamHydrologicSequenceNumber: Integer
- + upstreamLevelPathId: Integer
- upstreamMinimumHydrologicSequenceNumber: Integer



# **NHD: Elements**

| fromNode                 | Nationally unique ID for the<br>"from" node (upstream node)<br>endpoint                                                  | drainStreamLevel                                                                               | Current stream level; supports<br>upstream mainstream<br>navigation                                                              |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| toNode                   | Nationally unique ID for the "to"<br>node (downstream node)<br>endpoint                                                  | downstreamDrainLevel                                                                           | Stream level of downstream<br>mainstem reach; supports<br>downstream navigation                                                  |
| hydrologicSequenceNumber | Nationally unique sequence<br>number for the current reach                                                               | streamOrder                                                                                    | Strahler stream order number for the reach                                                                                       |
| startFlag                | Code to mark headwater<br>features                                                                                       | upstreamLevelPathId  upstreamHydrologicSequenceNumber  upstreamMinimumHydrologicSequenceNumber | Level path identifier of the<br>immediately upstream<br>mainstem reach; supports<br>navigation traversals through<br>SQL queries |
| terminalFlag             | Code to mark features that<br>terminate in the ocean, the<br>Great Lakes, Canada, Mexico                                 |                                                                                                |                                                                                                                                  |
|                          | or in closed basins                                                                                                      |                                                                                                | Hydrologic sequence number of<br>the immediately upstream<br>mainstem                                                            |
| terminalDrainId          | Hydrologic sequence number<br>for the terminal reach to which<br>this drain flows                                        |                                                                                                | Minimum hydrologic sequence                                                                                                      |
| levelPathId              | Hydrologic sequence number of<br>the most downstream reach<br>that is on the same level path                             |                                                                                                | number of all immediately<br>upstream reaches                                                                                    |
| iever autiu              |                                                                                                                          | downstreamLevelPathId                                                                          | Level path identifier of<br>downstream reach                                                                                     |
| arbolateSumKm            | Sum of the lengths, in<br>kilometers, of all the reaches<br>that drain to the downstream<br>end of the current reach     | downstreamDrainCount                                                                           | Number of drains immediately downstream                                                                                          |
| pathLengthKm             | Distance from this reach's downstream end to the terminal reach downstream end                                           | downstreamMinorHydrologicSequenceNumber                                                        | At a divergence, the Hydrologic<br>Sequence Number of the<br>immediately downstream minor<br>path reach                          |
| thinner                  | Ordinal value to allow selection<br>of progressively more dense<br>networks; least dense network<br>is where thinner = 1 |                                                                                                | 1                                                                                                                                |
| divergenceFlag           | Code signifying if reach is part of a flow divergence                                                                    |                                                                                                |                                                                                                                                  |



# **Sub-schemas/HydroObjects**

- Standard Hydrologic Exchange Format (SHEF NOAA data format)
- StreamReach (GML based)
- Reservoir (GML based)
- More to come!



#### HydroObjects: GML HydroFeatures as a first start

+ areaOfComplexChannels

- areaToBeSubmerged
- + artificialPath
- + canalDitch
- + coastline
- + connector
- damWeir
- estuary
- + flume
- + gate
- + iceMass
- inundationArea
- lakePond
- + lockChamber
- + pipeline
- + reservoir
- + seaOcean
- + shoreline
- + sinkRise
- + spillway
- + springSeep
- streamRiver
- swampMarsh
- waterIntakeOutflow
- + well

HydroFeature Types in DHS model

Department of Homeland Security (DHS)
Geospatial Data Model
Federal Geographic Data Committee (FGDC)
Framework

ANSI Geographic Information Framework Data Content Standard

Part 6: Hydrography

GML Application Schema (Features)

To describe HydroFeatures

Why no WaterShed?



#### **Sample Sub-Schema for SHEF**





# **SHEF (cont)**





#### Sample Sub-Schema for StreamReach





# StreamReach (cont)





# Sample Sub-Schema for Reservoir







#### **Next Steps: Sub-schemas**

- HydroObjects
  - ▶ Need to take a look at the GML based features, and possibly expand the descriptive scope (see Reservoir). Also, possible creation of new objects, like a WaterShed object, or a geoVolume object.
  - ▶ Need to develop a framework such that hydro-objects can be linked in the context of a digital watershed (DW) representation.
  - ► This may need to culminate in the development of a formal representation of a digital watershed and how hydro-objects can aid in forming a DW.
  - Next on the list: Watershed
    - quite complex because it is one of the fundamental core objects that need to be described.



# Next Steps: Sub-schemas (cont.) Thoughts on Future HydroObjects Framework





#### **Next Steps: Data Adapters and Website**

- ➤ Data Adapters
  - ► Creation of first example data adapter to translate HydroXC and SHEF formats
  - Will highlight in next workshop meeting
- Website
  - Launches at end of March at www.hydroxc.org



# **Open Discussion**

➤ Thank you!