Evaluation of NWS Ensemble Streamflow Prediction

Kristie Franz

Department of Hydrology and Water Resources University of Arizona

Holly C. Hartmann, Soroosh Sorooshian, Roger Bales

Forecast Points

- ✓ Colorado River
 Basin
- ✓ Calibrated
- ✓ Data available
- ✓ Headwater location
- ✓ High Interest

Forecast Points

Forecast Points: Basin Streamflow Averages

Generation & Evaluation

- Generated historical ESP forecasts for all years with T, P & Q data, for the same forecast periods reported by NWS.
- 2. Calculated statistics for each forecast period.
 - Created single-value forecasts by taking median & "best" traces; results in deterministic forecasts
 - Disclaimer: Not Recommended, but familiar
 - MAE/Standard Deviation of observed, PBLAS, R, Nash-Sutcliffe
 - Probabilistic Forecasts
 - RPSS = % improvement over climatology

• Discrimination & Reliability

UC Med

Median trace for UC performs better than LC on average

The ultimate forecast trace...

Procedural Error

Deterministic Forecasts

ESP Forecasts :Creating Probability

RPS for J = 5 Percentiles

RPS calculation

Probability	Forecast	Observat	ion	Cum.Sum	Cum.Sum	(F-O) ²
Interval			if	F	Ο	
0-10%	0.1	0	1	0.1	0	0.01
>10-30%	0.2	0	0	0.3	0	0.09
>30-70%	0.4	1	0	0.7	1	0.09
>70-90%	0.2	0	0	0.9	1	0.01
>90-100%	0.1	0	0	1	1	0
Sum Equals RPS						0.2

$$\overline{RPS} = \frac{1}{n} \sum_{k=1}^{n} RPS_{k}$$

For particular forecast window (k = # Forecasts)

RPS = 1.4

RPS and SS

Why the RPS?

- looks at entire distribution (all traces)
- gives credit for probability close to observed
- penalizes for probability far from observed
- overall summary stat for those concerned with all flow levels (water managers)

$$RPSS = \frac{RPS_f - RPS_{cl}}{1 - RPS_{cl}} x100\%$$

Calculate percent improvement over climatology as next best

Forecast Statistics: RPSS

Average RPSS

Example Discrimination Diagram

Discrimination Diagrams for Observation in Lowest 30% for LC

Discrimination Diagrams for Observation in Middle 40% for LC

Discrimination Diagrams for Observation in Highest 30% for LC

Discrimination Diagrams for Observation in Lowest 30% for UC

Discrimination Diagrams for Observation in Middle 40% for UC

Discrimination Diagrams for Observation in Highest 30% for UC

Example Reliability Diagram

Reliability Diagrams for LC

Reliability Diagrams for UC

Summary & Conclusions

- •Median
- transforms the probabilistic forecast into a deterministic forecast
- results in a loss of valuable information
- forecast is destined to be wrong

•ESP

- provides probabilistic forecasts
- more explicit statement of total uncertainty (model + future)
- ESP (probability) forecasts are "never wrong"
- show improvement over climatology forecasts for seasonal water supply prediction

- accurately predicts the correct flow quantile in which the observed will occur for some basins with lead times of 2-3 months

 provides water supply information from start of the forecast season; ex. low probability for high flows often associated with low observed streamflow volumes

In addition, operational forecast can be expected to perform better than hindcast forecasts:

- -initial conditions updates
- -incorporation of climate information

Next Steps •compare ESP forecasts to historical regression forecasts by transforming deterministic to probabilistic •explore conditional probabilities based on climate information •assess usefulness of ESP forecast information for forecast users •snow conditions

Acknowledgements

- Office of Hydrology
 - Edwin Welles
 - Hank Herr
- CBRFC
 - Cara McCarthy
 - Dave Brandon

