5. Convective-Stratiform Separation

This section summarizes the work performed in this reporting period toward development of
areal-time convective-stratiform separation dgorithm in support of VPR correction (Seo et al.
2000).

5.1 Introduction

In Seo et al. (2000), a need has been identified for development of areal-time convective-
stratiform separation algorithm sothat VPR correction (Seo et a. 2000) may be performed at all
times regardless of the type of the storm on hand. In this section, we summarize the first-year
effort toward devel oping such analgorithm. The primary objective of this year’s work was to
identify the variables/attributes/indices/measures that possess significant skill in convective-
stratiform separation. The secondary objective was to identify the candidate techniques that may
be used to objectively quantify the probability of a particular azimuth-range (azran) bin
belonging to the convective core.

Before proceeding further, it must be pointed out here that, even though we freely use the
terms “ convective” and “ stratiform” throughout this section, we are not necessarily interested in
convective-stratiform separation in the storm-dynamical sense (see, eg., Houze 1993, p197).
Rather, our interest is strictly reflectivity-morphologcal: separate al instantaneous and azran
bin-specific VPRsin therain areainto “convective’ and “stratiform” groups such thet VPR
correction yields the largest margin of improvement in estimation of surface ranfall. It must dso
be noted here that, in addition to supporting VPR correction, convective-stratiform separation
may also be used in application of region-specific Z-R parameters. This microphysical aspect of
convective-stratiform separation (see, e.g., Houze 1993, p1999), however, cannat be effectively
dealt with without VPR correction, and hence is not considered in this work.

5.2 Literature Review

Steiner et al. (1995) offers probably the most extensive review of the radar data-based
convective-stratiform separation techniques. It isworth repeating their key findings here because
they serveas our starting point:

S identifying stratiform precipitation by bright band signaturesis severely limited,

S observation of bright band may, however, be used as a check on stratiform precipitation not
being misidentified as convective,

S time continuity techniques (based on echo-tracking) are laborious and computationally

expensive,

use of the horizontal structure of precipitation field is simpler and more practical, and

criteriafor identifying convective precipitation include intensity, peakedness, and surrounding

area.
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From the viewpoint of WSR-88D VPR correction, the biggest limitations of Staner et al.
(1995) are seen to be the following:

S separation is performed on Cartesian-gridded reflectivity data at 3-km altitude, and hence only
out to ranges of about 140 km, and

S amorerigorous and objective set of criteriais probably needed to prevent intense bright band
enhancement (easily exceeding 40 dBZ) from being misidentified as convective.

TRMM (the Tropical Rainfal Measuring Misson) PR (the Precipitation Radar) employs
two different methods to classify rain type; the vatical profile method and the horizontal pattern
method of Steiner et al. (1995). Below, we reproduce the summary of the vertical profile method
(http://trmm.gsfc.nasa.gov/2a23.html):

S bright band is detected based on the second derivative of reflectivity with respect to range, and
by imposing several conditions on the shape of the bright band profile and uniformity of the
height of the bright band peak, etc.,

the height of thebright band must lie within £1.5 km of theclimatological freezing level,
when bright band exists, rain is stratiform,

when bright band is not detected and the maximum reflectivity exceeds the convective
threshold, rain is convective, and

S therest isclassified as non-stratiform and non-convective.
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From the viewpoint of WSR-88D VPR correction, use of the dimatological freezing level is
clearly inadequate. Also, because bright band can be reliably identified only when enhancement
isintense, alarge area of mild bright band enhancement may go largely undetected (and hence
VPR-uncorrected).

It is somewhat puzzling to note that not much attention has been given in the literature to
using standard gatial statistics (e.g., those used in the Radar Echo Classifier, Kessinger et al.
1998) in convective-stratiform separation. It may bethat the computational burden has been a
discouraging factor. Aswill be seen, such statistics are extensively explored in this work.

In light of the above observations, the approach taken in thiswork isthe following:

S first identify convective cores and then perform checks on bright band-enhanced areas not
being misidentified as convectivecores,

S derive variables/attributes/indi cesymeasures from the volume-scanreflectivity datain their
original polar format at the 1°x1 km resolution and out to 230 km, and

S consider, at least initialy, only those variables that may be objectively quantified in an azran
bin-specific manner (so that the probability of a particular azran bin belongng to the
convective core may be estimated with a reasonably simple technique: see below).

5.3 ldentification of Skillful Variables

In identifying variables that may possess significant skill in convective-stratiform separation,



we assumed in this work that only the volume-scan reflectivity data are available. Itis
acknowledged that the height of the freezing level may aso be available from sounding, surface
observations and/or model output. Asillustrated below, such an information may indeed be used
to guide estimation of bright band height from the volume-scan reflectivity data. As also shown
below, however, it is difficult to make an objective use of the resulting information in an azran
bin-specific manner. For this reason, we did not explicitly requirein thiswork that the freezing
level be known from an external source.

Thefollowing variables (at each 1°x1 km azran bin and mapped onto the 230x360 base tilt)

are considered in this work:
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maximum apparent redar rain rate inthe vertical, denoted asr,,
local mean of r,, denoted as m,,
local standard deviation of r,, denoted as ,,
~/M,,, denoted as cv,,,
local spatial correlation coefficient of r, along the radid direction at the lag distance of 1 km,
denoted as ,(*1*,),
local spatial correlation coefficient of r, along the azimuthal direction at the lag distance of 1
km, denoted as , (*1*,, ,
weighted (according to the sample size) averageof > *, and , * *.,
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height of the top of the apparent convective core denoted as h,
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height of the maximum reflectivity in the vertical, denoted h,,
mh
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height of the bright band, and area of the bright band enhancement as estimated by a variant of
Smith (1986) and Seo et a. (1997) (see below).



The motivation for the maximum apparent radar rain rate in the vertical, r,, isto detect the
presence of convective core (reflectivity>40dBZ, an adaptable parameter) regardless of the stage
of development of the convection (e, e.g., Houze 1993, p198). Examinaion of many volume
scans at KINX (Tulsa, OK) and KHGX (Houston, TX) indicates that identification of convective
core based on the magnitude of r, works well, aslong as there is no bright band enhancement.
The motivation for the spatial statistics of the maximum apparent radar rain rate in the vertical,
r, the height of the top of the apparent convective core, h, and the height of the maximum
reflectivity, h,, isto detect the stratiform region and, in particular, the area of bright band
enhancement. The spatial correlation coefficients are examined in two directions (i.e., azimuthal
and radial) under the presumption that, e.g., r, might be better correlated in the azimuthal
direction than in the radial in the area of bright band enhancement.

Thelocal statistics for the ij-th azran bin are calculaed over an areathat is i azimuthal bins
wideand | radia binslong. Theinitial sensitivity analysisindicates that a reasonéble choice for

i and | may be between 5 and 7 for both. Because we ae using the same choice of i
regardless of the slant range, the averaging area at a close range is necessarily much smaller than
that at afar range. This dependence of statistics on the averaging area (i.e., on the slant range)
will have to be examined further. Likewise, because the arc length of theazran bin isrange-
dependent, sample spatial correlation coefficients along the azimuthal direction can only be
calculated at different lag distances. To convert the sample spatial correlation coefficients at
varying spatial lag distancesto those at 1 km, it is assumed in this work that the correlation
function is negative exponential (with no nugget effect). This assumption will also have to be
investigated further.

To screen the variables listed above, we used the fdlowing two cases extensively; the squall
line of May 8-9, 1995, at KINX, and the extreme ranfall event of Oct 17-18, 1994, at KHGX.
The overriding motivation for the use of these cases was that they ae rather difficult examples of
the separation problem and that we know where the true areas of convective cores and stratiform
region are: the squall line allows a clear-cut visual separation of convective and stratiform areas
and, in the Houston case, we know from the radar-gage analysis (Seo et al. 1996) where bright
band enhancement is present (though difficult to tell visualy).

Based on various types of visual and statistical analyses using Splus (MathSoft 1998), we
identified the following three asthe most skillful; r,, min{ ,* *, > *.},and
mn{ ,,* *, > *.t. Fornotationa brevity, wedenotemin{ ,* *, ., * *.}and
mn{ ,* *, > *ata ,and ., respectively. The particular skill that each of these
variables brings to convective-stratiform separation may be best illustrated through the following
examples.

5.4 Examplel

Thisis an archetypical southern-plains squall line with clear-cut convective front and trailing
stratiform region. Fig 1 showsthe field of r,. Note the concentric arcsin the stratiform region
due to bright band enhancement. Figs 2 and 3 show the fields of r,>15 and <15 (mm/hr),
respectively. They reoresent the convective core (Fig 2) and the apparent non-convedive core
(Fig 3) regions after theinitial separation using r,. Note that this simplescreening works well in



the convective core. It fails, however, in the stratiform region because of intense bright band
enhancement.

Fig 4 showsthefield of . Note that the stratiform region is characterized by larger values
of |, particularly at far ranges due in part to beam widening. Figs5 and 6 show the fields of
+>0.96 and <0.96, respectively. They represent the stratiform (Fig 5) and the apparent non-
stratiform (Fig 6) regions. It may appear that the stratiform region could have been better
identified with a smaller threshold value of ,,. Further examination, however, suggests that the
threshold has to be chosen rather conservatively because smdler threshold values of |, tend to
result in the identified stratiform region intruding on the (true) convective cores.

Comparison between Figs 2 and 5 indicates that the area of bright band enhancement in Fig 2
can be negated by the |, screening only partially. To screen out the area of bright band
enhancement at close ranges, weturnto .. Fig 7 showsthefield of h,. Note that the
convective core is characterized by highly variable h, whereas the stratiform/bright band-
enhanced regon is characterized by rather uniform h,. Fig 8 showsthefield of ,,. Figs9and
10 show thefieldsof ,>0.99 and <0.99, respectively. They represent the stratiform/bright band
(Fig 9) and theapparent non-stratiform/non-bright band (Fig 10) regions.

Figs 11 through 14 illustrate how each of the three variables, r,, ., and ,,, contributes to
isolation of the convective core.

Fig 11 - ther, threshold is applied: alarge area of intense bright band enhancement is
misidentified as convective

Fig 12 - the |, threshold isadditionally applied: bright band enhancement at mid - to far ranges
isnow correctly identified as stratiform, but that at close rangeis still misidentified as
convective

Fig 13- the ,, threshold isadditionally applied: bright band enhancement at theclose rangeis
now correctly identified as stratiform, but the convective core at the farthest range at the
top of the radar umbrellais now misidentified as stratiform

Fig 14 - convective-stratiform separation after applying dl three thresholds

It may be argued that the |, screening does not contribute much, and that screening based
onlyonr,and ,, may bejust as effective. On the other hand, ,,isameasure that is
significantly more range-dependent than |, due to the sparsity of the sampling interval of the
radar beams in the vertical, and hence is subject to large uncertainties. As such, exclusive
relianceon |, for identification of stratiform region/area of bright band enhancement should
probably be avoided. To assess the range dependence of these measures and their skill, further
investigation is needed.

We now turn our attention to the question of what may be gained in convective-stratiform
separation if the height of the freezing level is available from an external source. Fig15 shows
the locations of the “couplets’ corresponding to Fig 1. The couplet locations in the figure mark
the azran binsin the volume-scan reflectivity data projected onto the base tilt for which, for each
azimuthal angle, the peak refledivity (a proxy for the bright band peak in the vertical) is
observed at approximately the same height between any two adjacent tilts (for details see Smith



1986, Seo et a. 1997). In thefigure, the concentric clusters are associated with the bright band
peaks observed in the lowest (locaed at the farthest range) to thehighest (located at the closest
range) tilts. The elongated cluster in the southeastern sector is associated with the convective
core (misidentified as bright band by the couplet analysis).

Fig 16 shows the distribution of the height of the couplets from all azimuthal angles.
Visualy, it is easy to tell that the tight horizontal cluster along the altitude of approximately 3.5
km is associated with the bright band, and that the loose clusters above and bel ow the bright band
height are associated with the convective front. The two solid horizontal linesin the figure are
the break points produced from a cluster analysis, in which the data points in the figure are asked
to be grouped into three cluster. Visually, it iseasy to tell that it isthe middle duster whichis
associated with the bright band.

By simply calculating the mean and standard deviation of the data pointsin the midde
cluster, one may obtain avery good estimate of the height of the bright band and a measure of
uncertainty associated with it, as shown in Fig 17 by the solid and dashed lines, respectively.
Following such an analysis, it is then possible to sareen out the misidentified couplets (i.e., those
that are associaed with the convective front), and produce an estimate of the areaof intense
bright band enhancement (by what amounts to “connecting the dats” of surviving couplet points
in Fig 15), asshown in Fig 18. Notethat Fig 18 compares well visually with the area of intense
bright band enhancement seen in Fig 1, suggesting that such amgp may serve as an additional
screening criterion in convective-stratiform separation.

Experience suggests, however, that in an automatic mode it is rather difficult to ascertan
which cluster is associated with the bright band and which are not (note that the skill level for
this discrimination has to be extremely high, probably close to perfection, for the technique to be
operationally viable). The problem is much more difficult if the area of intense bright band
enhancement isrelatively small. Itisinthisareaof pointing to the right cluster that the
externally-provided freezing level can be useful.

5.5 Example 2

The second example comes from the extreme rainfall event at KHGX occurred in Oct 17-18,
1994 (NWS 1995). Fig 19 shows afield of r, in the middle of the event. It is convective
everywhere except at the farthest ranges in the northeastern sector, where based on the gage-radar
analysis (Seo et al. 1996) we known that bright band enhancement is present. To assess
robustness of the screening criteria, we used in this example exactly the same adaptabe
parameter and threshold values as those used in Example 1. Fig 20 showsthefield of
corresponding to Fig 19. Note that the |, values are larger in the area of bright band
enhancement. Fig 21 showsthefield of .. The spotty nature of thefield isduein part to the
relatively high (i.e., for this event) cutoff of 40 dBZ used to determine the convective corein
caculationof |, and . Figs22 through 25 are completely analogousto Figs 11 through 14,
respectively. Considering that there was no case-spedfic tuning of any kind, the results are
encouraging.



5.6 Objective Quantification of Prob[thebin convective]

In the two examples given above, we limited ourselves, for the sake of demonstration, to
simply applying the thresholdsto arrive at the fina field of convective-gratiform separation. In
practice, however, such a*“binary decision-based” approach is not very desirable because asingle
set of thresholds cannot possibly work consistently and reliably for all sites, for all seasons, and
regardless of the radar calibration accuracy. For this reason, for the separation algorithm to be
operationally viableit is necessary that the likelihood of aparticular azran bin belonging to the
convective core be objectively quantified on a continuous scale (rather than binary-mapped).
One such commonly used scale is the probability measure, which we will adopt here also.

The objective then is to estimate the conditional probability, Prob[the azran
bin convective r.=r,, .= . = nl, Wherethebold signifiesthat it isarandom variable.
Though not explicitly denoted as such, the above probability will also have to beconditioned on
the dant range so that range dependence of the skill inr,, ,,, and , may be accounted for (e.g.,
v @ close and far ranges is much less informative than that at the mid range because of the cone
of silence and the sparse sampling of the radar beams in the vertical, respectively). To estimate
the conditional probability, wemay consider a number of different techniques;

neural network,

fuzzy logic,

optimal linear estimation (in particular, techniques based on indicator variable transformation),
Bayesian estimation (probably following variable transformation into multivariate normal), and
direct empiricad estimation of the conditiona probability.
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If the number of attributes can be kept to as small asthree (e.g.,r,, ., and ), direct
empirical estimation of the conditional probability may be the most desirable (completely data-
driven, unbiasedness guaranteed). If the number of attributesis larger (say, several), optimal
(linear or Bayesian) estimation may be preferred (they approximate multivariate statistics with a
set of bivariate statistics). If the number of attributes is more than several, neural network or
fuzzy logic may have to be used (explicit statistical modeling becomes very difficult).

The choice of the technique depends additionally on answersto the following questions: 1)
are the model parameters to be updaed on line? (algorithmically desirable but operaionally
impractical: seebelow), and 2) is unbiasedness in probability critical? If the answer to the first
question is “yes,” neural network, fuzzy logic, and Bayesian estimation become more difficult to
implement because they will require on-line training and/or paameter estimation. If the answer to
the second question is “no,” neural network and fuzzy logic become more attractive because, to
produce only “reasonable” results, rigorous training and parameter estimation/updating may not
be needed.

In reality, the answer to the first question is probably “no” because, other than the human
forecaster manually performing convedive-stratiform separation on a volume-scan by volume-
scan basis (clearly avery difficult task in the current operational environment), it will not be
possible to generate the truth field on line. For thisreason, it is particularly important that the
technigue of choice be parsimonious so that processing of long-term Levd 11 datafor parameter



estimation (requiring manual convective-stratiform separation) may be avoided. The answer to
the second question is probably “yes’ because biasednessin probability results, e.g., inVPR
correction being applied mistakenly to convective cores even though the adjustment factors are
derived from the stratiform profile (an error of very damaging consequence). In this respect, the
last three candidates are more gopealing because they are by design unbiased estimators (this
unbiasedness, however, is guaranteed only if the second-orde statistics required can be accurately
estimated, which in reality may or may not be met depending in particular on the sample size).

Given the above observations and the fact that as simple a screening as applying three
thresholds produces as encouraging aresult as seen in Figs 11 through 14 and through 22 through
25, optimal linear estimation based on indicator (i.e., binary) variable transformation is seen to be
an atractive compromise. Inthisapproach, one may estimate the conditiona probability,
Prob[the bin convective r.=r,, = . W= > VI&

Prob[the bin convective r.=r,, .= . W=

Ellcon 1oinol o= nol =1 nl
“Ellond * (o B ¥ i G B )+ i (i - ED )
where

1if the bin of interest isin the (true) convective core
iCOﬂV:

0 otherwise

1if r, at the bin of interest exceeds the k-ththreshold

rxk

0 otherwise

1lif |, atthebin of interest exceeds the I-th threshold

rxlI—

0 otherwise

1if ,, atthebin of interest exceeds the m-th threshold
i htm:
0 otherwise

Note that, by definition, we have g, ]=Prob[the bin convective], E[l,,,]=Prob[r,>k-th
threshold], E[I ,,]=Prob[ . >I-th threshold], end E[I ., ]=Prob[ ,>m-th threshold]. The weights,
rxk? x| and htm? ae given by:

+ Cov[lrx’lrx] Cov[lrx’l rx] COV[Irx!I ht] !'1+ COV['rx!'conv] ’
( rx? rx? ht): * COV[Irx!l rx] COV[I rx’I rx] COV[| rX!l ht] * * COV[I rx’Iconv]*



- COV[I ht’lrx] COV[I ht’I rx] COV[I ht’I ht] - - COV[I ht’lconv] -

where, eg., Cov[l.l ] isgiven, by definition, by Prob[r,> k-th threshold, > I-th threshold]-
Prob[r,> k-th threshold]Prob[ > I-th threshold] (i.e., the centered bivariate probability).

Theindicator approach is intuitive, and can accommodate both off-line parameter estimation
and on-line parameter updating. A known drawback, however, is that the estimate becomes
biased near the tail ends of the distribution if the varigbles involved arehighly skewed (asr,, .,
and ,, are). This, however, is probably not an issue in convective-stratiform separation because,
for purposes of hinary classification (i.e., either convective or stratiform), unbiasednessin
probability is critical only near the median.

5.7 Conclusions and Recommendations

S Three variables have been identified as particularly skillful in convective-stratiform separation;
the maximum apparent rain rate in the vertical, the local spatial correlation coefficient of the
maximum apparent rain rate in the vertical, and the local spatial correlation coefficient of the
height of the top of the apparent convective core.

S Theinitial results, obtained by simple application of the three thresholds, are very encouraging.
It suggests that optimal linear estimation based on indicator variable transformaion is well-
suited for probabilistic quantification of convective-stratiform separation. It is proposed that
such a procedure be prototyped and evaluated.

S Thevariables examined and identified as promising in this work need to be further tested
against awide spectrum of precipitation events. Also, the search for other potentially skillful
variables needs to continue.

S Generation of vdidation data sets remains a criticd outstanding issue Manual mass-
generation (eventually at the WFO’s?) based on visual examination of volume-scan
reflectivity data is not only labor-i ntensive but will also require agraphical user interface (GUI)
tool (WATADS?). A user operations concept needs to be developed for VPR correction
(including convective-stratiform separation) to address such issues.
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