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2.  Convective-Stratiform Separation

This section summarizes the work performed in FY02 toward the development of a real-time
automatic convective-stratiform classifier called the Convective-Stratiform Separation Algorithm
(CSSA).  This classifier supports the new Range Correction Algorithm (RCA), an algorithm to
correct real-time operational WSR-88D rainfall estimates for nonuniform vertical profiles of
reflectivity (VPR) (Seo et al. 2000) which is currently being software-engineered for implementation
in the WSR-88D Open Radar Product Generator (ORPG).

2.1  Introduction

In the RCA algorithm of Seo et al. (2000), estimation of mean VPR and application of the
resulting correction factors are carried out over the entire 3-dimensional scanning domain of the
radar, rather than locally, due to computational and sampling reasons (Seo et al. 2000, Vignal et al.
2000).  Studies indicate that, while radar umbrella-wide estimation and correction of VPR effects
works well for widespread pure stratiform events (Seo et al. 2000), such a practice can be
counterproductive in situations of embedded convection (Vignal et al. 2000) as explained below.
Because convective cores generally occupy only a small fraction of the entire precipitation area,
mean VPR is reflective more of the reflectivity morphology of stratiform precipitation than that of
convective precipitation.  As such, application of the adjustment factors derived from mean VPR
to convective cores results, in general, in overestimation of rainfall (assuming, of course, that the
Z-R parameters are reasonable).  For this reason, automatic recognition and separation of convective
cores from stratiform precipitation is considered a requisite for routine implementation of VPR
correction.  The net effect sought from this two-step approach of 1) convective-stratiform separation
and 2) mean VPR estimation and correction (both limited to stratiform area only) is essentially local
VPR correction (Vignal et al. 2000).

In FY01, exploratory analysis was carried out to identify attributes that are skillful in
separating convective cores from the stratiform background (or vice versa) (see the summary in
Fulton et al. 2001).  The purpose of this work is to develop an automatic algorithm that quantifies,
in probabilistic terms, the likelihood of an azimuth-range (az-ran) bin belonging to the
convective/stratiform area based on these attributes.

2.2  Methodology

As summarized in Fulton et al. (2001), a number of candidate techniques are available for
probabilistic classification.  As suggested in Fulton et al. (2001), we use in this work the indicator
approach (Deutch and Journel 1992, Seo 1996) as an approximation to the multivariate probability,
Prob[Bin 0 convective (or stratiform) | attribute1 < (or $) threshold1,i1, attribute2 < (or $)
threshold2,i2,..., attributen < (or $) thresholdn,in; i1=1,...,m1; i2=1,...,m2;...;in=1,...,mn], where n is the
total number of attributes employed, and m1 through mn denote the number of thresholds used for
attributes 1 through n, respectively.
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As summarized in Fulton et al. (2001), a number of attributes were examined in FY01 that
may possess significant skill in discriminating convective cores from stratiform background (or vice
versa).  It was found that the following three are particularly skillful; maximum reflectivity in the
vertical (denoted as rx), vertically-averaged local spatial correlation of reflectivity (denoted as Dr),
and local spatial correlation of the top-height of apparent convective core (denoted as Dh).  The
apparent convective core is defined as any az-ran bin in the vertical exceeding 35 dBZ (an adaptable
parameter).  The correlation-based attributes, Dr and Dh, are defined as the minima of the correlation
coefficients along the radial and the azimuthal directions; i.e., Dr = min{ Dr,radial, Dr,azimuthal } and Dh =
min{ Dh,radial, Dh,azimuthal }.  As will be seen, additional attributes were also examined in this work for
possible inclusion in the conditioning set, such as the reflectivity gradient in the vertical above the
height of maximum reflectivity and the vertically-integrated liquid water content (VIL).

Given the three attributes, rx, Dr, and Dh, the problem is then to estimate the conditional
probability that any given az-ran bin may belong to the convective or stratiform area of precipitation.
In the indicator approach, the conditioning variables are not the absolute magnitude of the attributes
themselves, but only their binary encoding, based on whether the attributes are greater or less than
some preset thresholds.  Here, we formulate the estimator as Prob[ Bin 0 stratiform | rx < rxci, Dr $
Drcj, Dh $ Dhck; i=1,...,n1, j=1,...,n2, k=1,...,n3 ], where n1, n2 and n3 denote the number of thresholds
used for rx, Dr and Dh, respectively.  We then approximate the above conditional probability with the
following conditional expectation involving indicator variables (i.e., the binary rendition of the
attributes via thresholding):

    Prob[ Bin 0 stratiform | rx < rxci, Dr $ Drcj, Dh $ Dhck; i=1,...,n1, j=1,...,n2, k=1,...,n3 ]

. E[Is | Irxi = irxi, IDrj = iDrj, IDhk = iDhk; i=1,...,n1, j=1,...,n2, k=1,...,n3 ] (1)

In the above and throughout this section, random variables are denoted by upper case letters and the
outcome of the random variables by the corresponding lowercase letters.  In Eq.(1), rxci, Drcj and Dhck
are the i-th, j-th and k-th thresholds for rx, Dr and Dh, respectively, and the indicator variables, Is, Irxi,
IDrj and IDhk are defined as:

        0  if the bin is in the convective core
is= { (2)
        1  otherwise

          1  if rxi < rxciirxi = { (3)
          0  otherwise

           0  if Drj < DrcjiDrj = { (4)
           1  if otherwise

           0  if Dhk < DhckiDhk = { (5)
           1  otherwise
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The conditional expectation of Is is estimated by the following linear estimator:

   E[Is | Irxi = irxi, IDrj = iDrj, IDhk = iDhk; i=1,...,n1, j=1,...,n2, k=1,...,n3 ]
   ni               nj                nk
= G 8rxi irxi + G 8Drj iDrj + G 8Dhk iDhk (6)
  i=1            j=1              k=1

where 8rxi, 8Drj and 8Dhk denote the weights associated with the indicator variables.

Note in the above development that we could have just as easily formulated the estimator in
terms of the bin belonging to the convective core, i.e., Prob[ bin 0 convective | rx $ rxci, Dr < Drcj, Dh
< Dhck; i=1,...,n1, j=1,...,n2, k=1,...,n3 ].  Examination of the conditional probability structure, however,
indicates that the stratiform formulation in Eq.(1) is preferable and, in fact, produces better results
(not shown).  The weights, 8rxi, 8Drj and 8Dhk, are obtained by solving the following indicator version
of ordinary kriging (see, e.g., Deutsch and Journel 1992):

Minimize J = E[(Is - Is
*)2 | Irx = irxi, IDr = iDrj, IDh = iDhk; i=1,...,n1, j=1,...,n2, k=1,...,n3 ] (7)

subject to

   n1          n2           n3
   G 8rxi + G 8Drj + G 8Dhk = 1 (8)
  i=1        j=1         k=1

where Is
* in Eq.(7) is given by Eq.(6).  The above constrained minimization is identical to ordinary

kriging, for which the weights are obtained by solving the following linear system:

 +  Cov(Irx,Irx)   Cov(Irx,IDr)   Cov(Irx,IDh)   U1
T  , +  8rx   ,    +  Cov(Is,Irx)  ,

 *  Cov(IDr,Irx)   Cov(IDr,IDr)  Cov(IDr,IDh)   U2
T   * *  8Dr   * = *  Cov(Is,IDr)  * (9)

 *  Cov(IDh,Irx)  Cov(IDh,IDr)  Cov(IDh,IDh)   U3
T   * *  8Dh   *     *  Cov(Is,IDh) *

 .        U1                U2                 U3            0      -  .  :     -     .        1         -     

In the above, : is the Lagrange multiplier, U1 is the (1xn1) unit vector; U=(1,1,..,1),  Cov(Is,Irx) is
the (n1x1) indicator covariance vector;  Cov(Is,Irx) = [Cov(Is,Irx1),...,Cov(Is,Irxn1)]T, and Cov(Irx,IDr)
the (n1xn2) indicator covariance matrix;

                      +  Cov(Irx1,IDr1)...Cov(Irx1,IDrn2)   ,
Cov(Irx,IDr) = *  Cov(Irx2,IDr1)...Cov(Irx2,IDrn2)   * (10)
                      *                     .                          *
                      . Cov(Irxn1,IDr1)...Cov(Irxn1,IDrn2)  -     

In a nutshell, the indicator approach described above approximates multivariate probability
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with a set of bivariate probabilities.  For example, note that Cov(Is,Irx1) in Cov(Is,Irx) may be
rewritten as:

   Cov(Is,Irx1)

= E[Is Irx1] - E[Is] E[Irx1] (11a)

= Prob[ Bin 0 stratiform, rx < rxc1 ] - Prob[ Bin 0 stratiform ] Prob[ rx < rxc1 ] (11b)

= { Prob[ Bin 0 stratiform | rx < rxc1 ] - Prob[ Bin 0 stratiform ] } Prob[ rx < rxc1 ] (11c)

Hence, if the maximum reflectivity in the vertical is indeed a skillful attribute in discriminating
convective cores from the stratiform area (or vice versa), the conditional probability, Prob[ Bin 0
stratiform | rx < rxc1 ], should be greater than the unconditional probability, Prob[ Bin 0 stratiform
] (thus resulting in a positive indicator covariance).  In this way, the indicator approach also
facilitates systematic assessment of the skill level of candidate attributes in a simplified (bivariate,
as opposed to multi-variate) manner.

2.3  Estimation of Indicator Statistics

Preferably, the covariance terms in Eq.(9) should be estimated climatologically, stratified
according to season and, if necessary, synoptic conditions in a site-specific manner.  From an
algorithmic point of view, such climatological estimation is not an issue in that climatological
indicator statistics can easily be updated recursively on line via, e.g., exponential smoothing
(Schweppe 1973).  From an operational point of view, however, such estimation does pose a
problem in that ground-truthing (i.e. delineating the ‘true’ convective core) would require human
(i.e., the forecaster) interface.  For that reason, the working assumption in this work is that rigorous
or site-specific estimates of climatological indicator statistics will not be available in the operational
implementation of the algorithm, and that the algorithm must work reasonably well even if the
indicator covariance estimates may be significantly off from the ‘optimal.’  Here, we estimate the
covariance terms in Eq.(9) only from a single event, a classic southern plains squall line at KINX
(Tulsa, OK) (see Table 1).  This choice is motivated by the fact that the storm has a very well-
defined convective front followed by a well-defined trailing stratiform region (and hence leaves little
doubt as to where the ‘true’ convective core is ), and that an operational separation technique has
to perform reasonably well even if the covariance structure is subject to large uncertainties (and
hence offers a more stringent test for the separation technique).

Figs. 1, 3, 5, 8, 14, 16, and 21 show the maximum reflectivity (rx) fields for volume scans
245, 255, 265, 275, 285, 295 and 305, respectively, during the event at KINX.  The sequence
captures the passage of a well-developed squall line with well-defined convective leading edge and
stratiform trailing region within the radar umbrella.  In each figure, the straight line denotes the 
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demarcation between the convective and stratiform areas as recognized visually.  The ‘true’
convective core was then assumed to be the area for which rx exceeds 35 dBZ (an adaptable
parameter) in the convective side of the demarcation line.  Figs. 2, 4, 6, 9, 15, 17, and 22 show the
corresponding Prob[ Bin 0 convective | C ] (= 1 - Prob[ Bin 0 stratiform | C ] ) estimated from Eq.(6)
for volume scans 245, 255, 265, 275, 285, 295 and 305, respectively.  

Throughout this work, the number of thresholds chosen for the attributes was 3 for all; irxc1
= 38 (dBZ), irxc2 = 40 (dBZ), irxc3 = 42 (dBZ), iDr1 = 0.97, iDr2 = 0.98, iDr3 = 0.99, iDh1 = 0.9, iDh2 = 0.99,
and iDh3 = 0.999.  Visual inspection of the figures indicate that a threshold probability of about 0.87
(i.e. between the color-coding levels of ‘red’ and ‘black’ in the probability figures) separates
convective cores reasonably well.  How the attributes Dr and Dh may contribute to the discrimination
may be seen in Figs. 10, 11 and 12, which show, respectively, the top-height of the apparent
convective core,  Dr and Dh.  Note that, generally speaking, the larger Dr or Dh is, the less likely the
precipitation is convective.

Although the technique is generally successful in delineating the convective core, a number
of deficiencies are readily apparent even in these results from the calibration (i.e. parameter
estimation) mode;
1) chunks of areas in the convective core are not identified as convective (‘red’ non-convective

‘islands’ in the ‘black’ convective ‘channels’),
2) convective cores at the farthest ranges are not identified as such,
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3) there are arcs in the stratiform region misidentified as convective (see, e.g., Fig. 9), and
4) there are blobs in the stratiform region misidentified as convective (se, e.g., Fig. 17).

Issue 1 stems from the fact that mature convective cores have spatially rather uniform
reflectivity and top-height of convective core.  Initially, use of non-normalized attributes (other than
rx) such as the vertically-integrated liquid water content (VIL, see Fig. 7) and reflectivity gradient
in the vertical above the height of maximum reflectivity (see Fig. 13) were purposefully avoided so
that the separation technique is rendered as site-independent as possible.  The above deficiencies,
however, suggest that non-normalized attributes may have to be introduced to the conditioning set
in Eq.(6).  Issue 2 stems from the fact that both the horizontal and the vertical resolutions are greatly
diminished at the farthest ranges.  This problem can be addressed by estimating the covariance
structure and applying the separation technique in a range-dependent manner.  Issue 3 stems from
the lack of sampling resolution in the vertical (i.e. VCPs are too sparse).  Note in Fig. 9 that the
‘black’ areas in the stratiform region corresponds to the ‘lighter’ areas in the same region of Fig. 12.
Note in Fig. 10 that these areas correspond to the ranges where sudden ‘jumps’ (e.g., from ‘green’
to ‘yellow’ in the color coding scheme) occur in the top-height of apparent convective core.  Such
‘jumps’ are essentially a VPR effect, and hence are difficult to address with an estimation technique
that works in a bin-by-bin manner.  In addition to bin-by-bin classification, areal masking may also
be necessary to effectively deal with this problem (see, e.g., Fig. 18 in Section 4 of Fulton et al.
2001).  The source of Issue 4 is not very clear.  Note that the ‘black’ blobs in the stratiform region
of Fig. 17 arises from the ‘holes’ in the same region of Figs. 19 and 20.  These ‘holes’ occurs
because of the small areas of anomalous high top-height of apparent convective core (the ‘red’
specks) in the stratiform region of Fig. 18, the source(s) of which is unknown at this point.

2.4  Evaluation

For independent evaluation of the classification technique, separation was performed for the
following cases and the results are visually examined.  To test the robustness of the technique, a
wide range of events from various sites were included.  Because the separation technique is to
support VPR correction, we are not necessarily interested here in quantifying how 
successful the classification is (which may or may not result in significant improvement in VPR
correction).  As such, the focus here is on qualitative evaluation of the classification results through
careful visual examination.  Due to space limitations, it is not possible to include all results.  Here,
we limit presentation of the results only to a single volume scan per site: they are chosen such that
the performance of the separation technique is representative of many other volume scans for the
site.  Below, we summarized the results for each case.  It is reminded here that the covariance
structure used in the validation runs is based solely on the single KINX event, and no additional
tuning of any kind was performed for the validation.

Table 1.  List of cases.

Call Letter Site Tape # Period Storm Type Used For
KAMA Amarillo, TX N04248 5/30/95 squall line validation
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KATX Seattle, WA N10814 2/2/96 stratiform validation
KDDC Dodge City, KS N01158 7/14/93 organized-convective validation
KEVX Eglin AFB, FL N09652 10/4/95 hurricane (Opal) validation
KFDR Frederick, OK N01114 5/9/93 squall line validation
KFWS Forth Worth, TX N02983 4/18/95 squall line validation
KHGX Houston, TX N02961 10/17/94 organized-convective validation
KICT Witchita, KS N02075 4/28/94 squall line validation
KINX Tulsa, OK N04206 5/8/95 squall line estimation
KMLB Melbourne, FL A20054 3/25/92 chaotic-convective validation
KOKX New York, NY N23993 10/19/96 stratiform validation
KRTX Portland, OR N12384 2/6/96 stratiform validation

KAMA - Misidentification of convective areas in the convective front is evident (the ‘red islands’
in the ‘black channel’ in Fig. 24).  The misidentification stems from very smooth top-
height of apparent convective core (see Figs. 26 and 27).  Inclusion of VIL may improve
the situation.

KATX - This is a pure stratiform event, and the separation technique correctly identifies the
entire area as such.

KDDC - Although the leading edge (below the straight line) is discernable, only the area within
the arc of relatively uniform rx (see Fig. 30) is stratiform.  Except for a few ‘red islands’
in the areas of mature convection and at far ranges (see Fig. 31), the separation is quite
successful.

KEVX - Misidentification in the areas of mature convection is glaring.  Note in Fig. 34 that the
top-height of convective core is spatially very uniform, resulting in large Dh (see Fig.
36).  As in KAMA, use of VIL as an additional attribute may improve the situation.

KFDR, KFWS - Except for a few ‘red islands’ and misidentification at the farthest ranges, the
separation is very successful.

KHGX - The separation is quite successful except for the far-range convective core in the 11
o’clock direction.

KICT - The separation is very successful except for a few spots in the convective cores.

KMLB - Other than a few ‘red islands’ in the areas of mature convection, the separation is very
successful.

KOKX - A large area in the stratiform region is mis-classified.  The misidentification stems from
the lack of vertical sampling resolution: note in Figs. 49 and 51 that the abrupt changes
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in the top-height of apparent convective core is responsible for smaller Dh (and hence
the areas of misidentification in the stratiform region).  Denser VCPs should improve
the situation.  Areal masking, based on identification of areas of brightband
enhancement, may also be considered.

KRTX - This is a pure stratiform event, and the separation is very successful.

2.5  Summary, Conclusions and Future Research Recommendations

Based on the exploratory analysis summarized in Fulton et al. (2001), a prototype technique
for automatic identification and delineation of convective core has been developed and evaluated
through visual examination.  Using the three attributes identified as the most skillful in FY01; the
maximum reflectivity in the vertical, rx (dBZ), the vertically-averaged local spatial correlation of
reflectivity, Dr, and the local spatial correlation of the top-height (km) of apparent convective core
(reflectivity exceeding 35 dBZ), Dh, the technique thresholds the attributes into binary (indicator)
variables, and performs optimal linear estimation on the indicator variables.  The result is a 230x360
polar map of probability of an azimuth-range (az-ran) bin belonging to the convective core.

To evaluate the performance and robustness of the technique, the indicator covariance
structure was estimated from a single squall line event in Tulsa, OK.  Then, the technique was
applied to 11 other cases from 11 different sites using the same indicator covariance.  Visual
examination of the results from both the parameter estimation and the independent validation phases
of the work indicates that:
1) the technique performs reasonably well for a wide range of events and sites, but
2) it tends to misidentify pockets of mature convection and at the farthest ranges of the radar.

The results also suggest that the technique may be improved by introducing additional
attributes in the conditioning set such as the vertically-integrated liquid water content (VIL), even
if the use of such a site- and seasonality-dependent attribute may compromise robustness of the
technique.  Other deficiencies of the technique are traced to the lack of sampling density in the
vertical (i.e., sparse VCP), and hence are more difficult to address.  The analysis carried out in this
work should be repeated using data from new (denser) VCPs before areal masking is considered for
the technique.

Because convective-stratiform separation is to support VPR correction, its performance must
ultimately be gauged through evaluation of the coupled application of convective-stratiform
separation and VPR correction.  It is recommended that:
1) inclusion of additional attributes be investigated to mitigate misidentification in the areas of

mature convection, and
2) performance of the separation technique be quantitatively evaluated through application of VPR

correction.

Computationally, the probability-estimation part of the separation technique described in this
work is trivial: it requires solving a small linear system only once.  On the other hand, calculation
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of the locally-averaged attributes in the prototype code, as is, is computationally rather intensive.
An efficient scheme for calculation of local statistics, such as successive addition and subtraction
employed in the Multi-sensor Precipitation Estimator (MPE), must be implemented to improve the
operational viability of the technique.
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