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1. Types of ensemble 
Verification metric



3

Many types of bias.  For example:
• Over- or under-forecasting (e.g. ensemble 

mean consistently too low or high).
• Too little uncertainty in ensemble forecast 

(“underspread”). 
• Bias that increases under specific conditions, 

(“conditional bias”).
• Bias resulting from poor model physics 

(“unreliable”) or resolution (“unresolved”).

Aim: reduce forecast bias
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Many types of metrics
• Reflects many different types of bias
• Four-dimensions reviewed here

1. Deterministic vs. ensemble approach
• Convert ensemble forecast to single-valued 

forecast by choosing “best guess” (mean).
• Apply single-valued metrics (RMSE etc.)
• Easy to understand, but inadequate. 

Types of metrics
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2. Absolute vs. relative quality
a) Absolute: metric for one forecast model
b) Relative: skill of one model over another

Skill needs a metric and reference

3. Detailed vs. summarized
• Detailed visualization of pairs (e.g. box plots)
• …to ‘one-number’ scores (e.g. mean CRPS).
• Both valuable (even for one application).

Types of metrics
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4. Reliability vs. discrimination
• When Y was forecast, what was observed?

“Our model predicts a 90% chance of flooding.”

RELIABLE if observed 9/10 times issued.
• When X was observed, what was forecast?

“When we observe Action Stage only, our model 
predicts a 100% chance of Flood Stage.”

Cannot DISCRIMINATE between AS and FS.

Types of metrics
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2. Examples of key metrics 
you will see today and how 

they are calculated
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Detailed vs. summarized
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Zero error line

Observed value (increasing size)
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• Then average across
multiple forecasts

• Small scores = better

CRPS (much less detailed)
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Reliability vs. 
discrimination



60% of time, observation should fall in window 
covering middle 60% (i.e. median ±30%) 

“Underspread”

“Hit rate” = 90%
GFS-EPP precipitation ensembles 
(w/o zero observed)
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Reliability diagram
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ROC plot (discrimination)
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Perfect
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Questions ???
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Extra slides (for questions)
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Many scientific and applied reasons
• E.g. “Completing the Forecast”

Separating bias from noise
• Forecasts will never be “error-free”
• Aim: to minimize consistent errors (bias)
• Eventually, just left with random noise
• XEFS/HEFS aims to do this
• Verification is needed to identify bias 

Why verify?
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Collect past forecasts and observations
• Database of past forecasts and observations.
• Pair every forecast with its associated obs. 
• Does the pairing make sense?

Then examine their joint statistics
• Cannot identify bias from a single pair.
• And we only sample the “true” relationship.
• Hence, we rely on statistics.

How can we verify?
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Clearly, we make some assumptions….
“Stationarity” (increases sample size)
• Ensembles: many-to-one pairing (many 

members vs. one observation)
• We collect together many pairs and assume 

each forecast is one realization of a 
stationary process (= many-to-many pairing).   

• Does not imply identical forecasts, but some 
statistical properties must be constant.

How can we verify?
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Assumption of discrete events
• Ensembles give us probabilities of events.  
• Continuous distributions have infinitely many 

events.  How to deal with this?
a) ….sometimes, interested in events that are 

inherently discrete (e.g. flood: [ stage > FS]).
b) ….some metrics integrate over all events (e.g. 

Mean CRPS).
c) ….otherwise, we must simply use thresholds.

How can we verify?


