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1. Verification System Overview

* Verification System Components:

— Logistical Verification to evaluate quality of forecast
services

— Forecast Verification to evaluate quality of forecasts

« Diagnostic verification and real-time/prognostic verification

 Forecasts to be verified:
— Deterministic and probabilistic (ensemble, water supply)

— Various space and time domains:
« point/area vs. grid

* lead time from 1 hour to several years
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1. Verification System Overview

Target System Capabilities: Available Tools

1. Data archiving =|HFS db, Archive db, Files, WR website
2. Computing metrics IVP 0b8.3, EVS.

3. Displaying data & metrics } WR website

4. Disseminating data & metrics } Stats on demand.

5. Real-time access to metrics WR website

6. Uncertainty analysis = Studies w/ Hindcaster
7. Performance measure tracking

IVP: Interactive Verification Program (deterministic verification)
EVS: Ensemble Verification System (ensemble verification)
Hindcaster: capability to retroactively generate forecasts using a fixed system |




2. Software development




User-Friendly Software

Ensemble Verification System (EVS)

« Javatool with structured GUI
Verification of numerical time-series

. Flexible “conditional verification”

« Several key metrics, including new ones

Status

« Available to all RFCs (experimental)
 Fully documented and freely available
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Verification Software Plans

Enhancements to EVS

«  Skill calculations

«  Sampling uncertainty

« Separating hydrograph shape/timing errors
. Incorporating feedback from RFCs

. Modify EVS to fit in XEFS, but ultimately.....

National Baseline Verification System
. Integrate capabilities of EVS and IVP
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Hindcaster: Goal

(Goal: systematic hindcasting/re-forecasting for all processes
In operational/experimental forecasting system to support
verification

Benefits:

— validate ensemble science from large samples for fixed
forecasting scenarios

— serve RFC’s operational need for calibration and validation

— quantify uncertainty sources using various hindcasting scenarios

Verify with various references to quantify error sources:

— forecast flow vs. simulated flow from perfect forcing inputs
—> forcing input uncertainty

— forecast flow vs. observed flow
—> forcing input uncertainty + hydrologic uncertainty
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Hindcaster: Processes

Hindcasting done
once for a given
forecast scenario
(fixed models) and
a given verification
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Hindcaster: Data

* Precipitation and Temperature:
— Step 1: continuous record of observations up to present
— Step 2: ensemble forecasts or hindcasts (e.g., from EPP2)

» Other inputs (MAPE, PTPE, QME, etc.):

— Steps 1 & 2: continuous record of observations up to
present

o Streamflow:
— Observations up to present for verification
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Hindcaster: Status

* Current prototype based on NWSRFS ESP:
— Modified to use enhanced ESP (DR 18809 for ob9)

—> produce retrospective model states for correct timing
— Coupled w/ EPP2 hindcaster

—> produce flow hindcasts from different EPP2 outputs

—> analyze impact of input and hydrologic uncertainties
— Run in pseudo single-valued mode

—> produce raw model hindcasts

—> analyze impact of operational MODs
— To be coupled w/ Ensemble Post-Processor

—> analyze impact of post-processing
- _ In the future, hindcaster w/ XEFS-CHPS

ATMasp,




3. Verification Science
Issues




Outstanding Science Issues

— Are verification results statistically reliable given sampling
uncertainty (i.e. can we act on them)?
— How can we verify real-time forecasts?

— Can we develop simple verification metrics for all aspects of
forecast quality?

— Can we diagnose particular error sources further (e.g. phase vs.
amplitude errors)?

— How can we verify extreme events?
— How can we account for error in observations?

— How can we verify forecasts for multi-scale variables (e.g. flow)?
— How can we verify forecasts if non-stationarity exists (e.g. climate

change)?
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3(a) Sampling Uncertainty




Sampling Uncertainty In
Verification

 Why sampling uncertainty

— Verification datasets are finite samples of true underlying
population, leading to verification statistics prone to
sampling errors

— Try to answer:
“s forecast A significantly different from forecast B2”

 Reducing sampling uncertainty
— Regional pooling to increase effective sample size

— Using resistant measures

* E.g., Mean Absolute Error (MAE) is less sensitive to outlier errors
than Mean Square Error (MSE)




Estimating Sampling Uncertainty

 Point estimation
— ignore uncertainty

« Standard error estimation
- Envelops (error bounds) around nominal values

 Interval estimation

— Confidence intervals

« random intervals with a specified level of confidence (e.qg.
95%, 99%) of including a given a sample value of a measure
(statistic)

— Other intervals
* Prediction interval, Bayes interval, ...
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Sampling Uncertainty: Example

Point Estimates — No Error Estimate
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Sampling Uncertainty: Example

Error Estimate Based on 100 Resamples
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Ongoing/Future Work on Sampling
Uncertainty

 Compute confidence intervals for verification
measures
— Analytical approaches
« Approximate sampling distribution of measures analytically

— Computational resampling approaches
* E.g., bootstrap methods

e Other issues

— QObservation error

» So that verification statistics generally appear worse than
they really are

— Spatial and temporal dependence
« Assumption of data independence often invalid
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3(b) Real-time Verification
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Formal Approach

“Collect obs. from past, analog, forecasts”

X = observed (unknown for live forecast)
Y ={Z,,...,Z,.}, live forecast
The aim Is to estimate (from past data):

F(X|z,,...,Z2,)

I.e. past observations whose paired
forecasts come from parent pop. of Y.
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How to Estimate?

No single ‘parametric’ model for all
forecast types (e.g. Normal).

“Indicator regression”. An estimate of
Prob[X<c;|Z;] j=1...n fOr several
“cutoffs”, i=1,..,p.

For each c; , estimate the average
number of times x Is below c; given
the z;'s are above or below c;: multiple

regression of 1's and O’s (indicators).
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Example of Results
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4. Collaborations
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RFC Collaborations

NWS Hydro. Forecast Verification team

« RFC verification workshop in Aug. 07

« Exercises with IVP and EVS

 RFC verification case studies with IVP and EVS

« 27 RFC verification workshop on Nov. 18-20, 2008

 Final team report in 2009 to propose standardized
verification strategies for identified users and
dissemination plan (with performance tracking measures)

http://www.nws.noaa.gov/oh/rfcdev/projects/rfcHVT _chart.html




Other Collaborations

Some key collaborators

 |owa State University and University of lowa
« University of California, Irvine
« HEPEX

THORPEX-HYDRO project
* Verification of met. and hydro. ensembles

COMET training

e Online verification module now available!!
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Thank you!

Any questions?




