National DOH Workshop 07/16/08

Ensemble Verification: Status and Plans

Julie Demargne, James Brown, Yuqiong Liu, and Dong-Jun Seo

Contents

- Verification system overview
- Software
 - Ensemble Verification System (EVS)
 - Hydrologic Ensemble Hindcaster
- Science
 - Sampling uncertainty
 - Real-time verification
- Collaborations

1. Verification System Overview

- Verification System Components:
 - Logistical Verification to evaluate quality of forecast services
 - Forecast Verification to evaluate quality of forecasts
 - Diagnostic verification and real-time/prognostic verification
- Forecasts to be verified:
 - Deterministic and probabilistic (ensemble, water supply)
 - Various space and time domains:
 - point/area vs. grid
 - lead time from 1 hour to several years

1. Verification System Overview

• Target System Capabilities:

Available Tools

1. Data archiving - IHFS db, Archive db, Files, WR website

2.	Computing metrics	IVP ob8.3, EVS,
3.	Displaying data & metrics	WR website
4.	Disseminating data & metrics	State on domand

5. Real-time access to metrics
Stats on demand,
WR website

6. Uncertainty analysis

Studies w/ Hindcaster

7. Performance measure tracking

IVP: Interactive Verification Program (deterministic verification) EVS: Ensemble Verification System (ensemble verification) Hindcaster: capability to retroactively generate forecasts using a fixed system

2. Software development

User-Friendly Software

Ensemble Verification System (EVS)

- Java tool with structured GUI
- Verification of numerical time-series
- Flexible "conditional verification"
- Several key metrics, including new ones

Status

- Available to all RFCs (experimental)
- Fully documented and freely available

Verification Software Plans

Enhancements to EVS

- Skill calculations
- Sampling uncertainty
- Separating hydrograph shape/timing errors
- Incorporating feedback from RFCs
- Modify EVS to fit in XEFS, but ultimately.....
- **National Baseline Verification System**
- Integrate capabilities of EVS and IVP

Hindcaster: Goal

- Goal: systematic hindcasting/re-forecasting for all processes in operational/experimental forecasting system to support verification
- Benefits:
 - validate ensemble science from large samples for fixed forecasting scenarios
 - serve RFC's operational need for calibration and validation
 - quantify uncertainty sources using various hindcasting scenarios
- Verify with various references to quantify error sources:
 - forecast flow vs. simulated flow from perfect forcing inputs
 - \rightarrow forcing input uncertainty
 - forecast flow vs. observed flow
 - → forcing input uncertainty + hydrologic uncertainty

Hindcaster: Processes

- Hindcasting done once for a given forecast scenario (fixed models) and a given verification time period:
 - Step 1: produce retrospective model states
 - Step 2: produce
 hydrologic
 hindcasts

Hindcaster: Data

- Precipitation and Temperature:
 - Step 1: continuous record of observations up to present
 - Step 2: ensemble forecasts or hindcasts (e.g., from EPP2)
- Other inputs (MAPE, PTPE, QME, etc.):
 - Steps 1 & 2: continuous record of observations up to present
- Streamflow:
 - Observations up to present for verification

Hindcaster: Status

- Current prototype based on NWSRFS ESP:
 - Modified to use enhanced ESP (DR 18809 for ob9)
 - \rightarrow produce retrospective model states for correct timing
 - Coupled w/ EPP2 hindcaster
 - \rightarrow produce flow hindcasts from different EPP2 outputs
 - \rightarrow analyze impact of input and hydrologic uncertainties
 - Run in pseudo single-valued mode
 - \rightarrow produce raw model hindcasts
 - \rightarrow analyze impact of operational MODs
 - To be coupled w/ Ensemble Post-Processor
 - \rightarrow analyze impact of post-processing
- In the future, hindcaster w/ XEFS-CHPS

3. Verification Science Issues

Outstanding Science Issues

- Are verification results statistically reliable given sampling uncertainty (i.e. can we act on them)?
- How can we verify real-time forecasts?
- Can we develop simple verification metrics for all aspects of forecast quality?
- Can we diagnose particular error sources further (e.g. phase vs. amplitude errors)?
- How can we verify extreme events?
- How can we account for error in observations?
- How can we verify forecasts for multi-scale variables (e.g. flow)?
- How can we verify forecasts if non-stationarity exists (e.g. climate change)?

3(a) Sampling Uncertainty

Sampling Uncertainty In Verification

- Why sampling uncertainty
 - Verification datasets are finite samples of true underlying population, leading to verification statistics prone to sampling errors
 - Try to answer:

"Is forecast A significantly different from forecast B?"

- Reducing sampling uncertainty
 - Regional pooling to increase effective sample size
 - Using resistant measures
 - E.g., Mean Absolute Error (MAE) is less sensitive to outlier errors than Mean Square Error (MSE)

Estimating Sampling Uncertainty

- Point estimation
 - ignore uncertainty

Standard error estimation

- Envelops (error bounds) around nominal values
- Interval estimation
 - Confidence intervals
 - random intervals with a specified level of confidence (e.g. 95%, 99%) of including a given a sample value of a measure (statistic)
 - Other intervals
 - Prediction interval, Bayes interval, ...

Sampling Uncertainty: Example

Point Estimates – No Error Estimate

(Adapted from Pocernich 2008)

NOAA 2008 DOH Workshop - July 15-17, 2008

18

Sampling Uncertainty: Example

Error Estimate Based on 100 Resamples

Ongoing/Future Work on Sampling Uncertainty

- Compute confidence intervals for verification measures
 - Analytical approaches
 - Approximate sampling distribution of measures analytically
 - Computational resampling approaches
 - E.g., bootstrap methods

Other issues

- Observation error
 - So that verification statistics generally appear worse than they really are
- Spatial and temporal dependence
 - Assumption of data independence often invalid

3(b) Real-time Verification

Informal Example

Formal Approach

- "Collect obs. from past, analog, forecasts" X = observed (unknown for live forecast) $Y = \{Z_1, \dots, Z_m\}$, live forecast The aim is to estimate (from past data): $F(x|z_1, \dots, z_m)$
- i.e. past observations whose paired forecasts come from parent pop. of Y.

Formal Approach

How to Estimate?

- No single 'parametric' model for all forecast types (e.g. Normal).
- "Indicator regression". An estimate of Prob[X≤c_i|Z_j] _{j=1,...,m} for several "cutoffs", _{i=1,...,p}.
- For each c_i, estimate the average number of times x is below c_i given the z_j's are above or below c_i: multiple regression of 1's and 0's (indicators).

Example of Results

26

4. Collaborations

RFC Collaborations

NWS Hydro. Forecast Verification team

- **RFC verification workshop** in Aug. 07
- **Exercises** with IVP and EVS
- **RFC verification case studies** with IVP and EVS
- 2nd RFC verification workshop on Nov. 18-20, 2008
- Final team report in 2009 to propose standardized verification strategies for identified users and dissemination plan (with performance tracking measures)

http://www.nws.noaa.gov/oh/rfcdev/projects/rfcHVT_chart.html

Other Collaborations

Some key collaborators

- Iowa State University and University of Iowa
- University of California, Irvine
- HEPEX

THORPEX-HYDRO project

- Verification of met. and hydro. ensembles
 COMET training
- Online verification module now available!!

Thank you!

Any questions?

