Short-Term Ensemble (STE) Concept of Operations *Revised Draft*

NOAA/NWS/OHD/HL/HSMB & DOH Science Steering Team Jul 26, 2006

7/12/2006

Hydrologic Ensemble Prediction Group (HEP)

This slideshow

- Summarizes the concept of operations (CONOPS) for short-term ensemble (STE) forecasting, jointly developed by OHD/HL/HSMB/HEP and DSST
- Depicts the <u>envisioned ensemble forecast</u> system that may best support the CONOPS, while building and capitalizing on the existing and planned capabilities

STE CONOPS Attributes

- 1. Forecast operation
- 2. <u>Blending with long-term</u> <u>ensemble forecast</u>
- 3. Uncertainty accounting
- 4. <u>Multi-model ensemble forcing</u>
- 5. <u>Capturing variability</u>
- 6. <u>Down- & re-scaling</u>
- 7. Data availability
- 8. <u>Relationship with</u> <u>deterministic forecast</u>
- 9. <u>Hydraulic routing &</u> <u>reservoirs</u>
- 10. Forecast environment

- 11. Visualization & MOD
- 12. Product generation
- 13. <u>DA & MOD</u>
- 14. <u>Transparency of forecast</u> <u>system</u>
- 15. Verification
- 16. <u>Products</u>
- 17. Data storage & management
- 18. <u>Training</u>
- 19. <u>Computing power</u>
- 20. <u>Keeping up with science</u> <u>evolution</u>

Forecast operation

- STE shall be used to issue forecasts for all forecast points for all situations (see next slide)
 - At RFCs: To issue all but long-term water supply forecasts
 - At WFOs: To produce primary guidance for flood watches and outlooks

Examples of STE graphical products

Hydrologic Ensemble Prediction Group (HEP)

Blending with long-term ensemble forecast

- STE (Day 1 to 14) shall be seamlessly blended with long-range ensembles (Day 15 and beyond) into a single forecast
 - With Climate Forecast System (CFS) ensemble forecast in addition to, or in place of, monthly/seasonal outlook forecast
- Science issues associated with blending shall be addressed

Uncertainty accounting

- STE forecast shall reflect uncertainties from all sources
 - Source-specific accounting and quantification of uncertainties (see next slide) associated with initial conditions, observed boundary conditions, future boundary conditions, model parameters, rating curves, etc.
 - Aggregate statistical modeling of residual uncertainties
- STE forecast shall reflect uncertainties that are conditional on environmental conditions
 - Some storms (strong cold front crossing the state) are much easier to forecast than others (cut-off low just off the coast)
 - The statistics and uncertainties during transitions or storms tend to shift from the climatology
 - Wide range of potential river responses is not always pleasing due to large uncertainties in precipitation forecasts

Uncertainties in streamflow forecast

Meteorological/Input uncertainty

Uncertainty

Uncertainty accounting (cont.)

- STE shall:
 - Account for dependence of uncertainty on forecast lead time
 - Account for uncertainty in forecasts of interrelated variables (e.g., QPF and QTF)
 - Account for uncertainty in forecaster MODs
 - Be able to process multiple forecasts of the same variables, and provide information on relative skill among them for forecaster decision-making

Multi-model ensemble forcing

- STE shall:
 - Allow use of alternate forcing sources (see next slide)
 - Meteorological forcing for hydrologic models originates from multiple sources; the final product is a combination of these procedures
 - Sources include HPC, MDL, WFO ISC/GFE grids, HAS, the numerical model of the day
 - Help forecasters select model(s) of choice (see next slide)

Multi-model ensemble forcing (cont.)

7/12/2006

Hydrologic Ensemble Prediction Group (HEP)

Capturing variability

- STE shall capture uncertainty in QPF due to:
 - Spatial and temporal variability
 - Individual forecaster bias
- STE shall account for space-time variability of precipitation
 - Is a precipitation value at one basin linked to a precipitation value at a basin nearby?
 - Is trace for one location linked to a trace at the downstream location?
- STE shall account for and allow adjustment of covariability relationships between precipitation and temperature
- Science for capturing variability shall be improved beyond Schaake Shuffle

Down- & re-scaling

- STE applications shall down- or re-scale forcings as necessary
 - Meteorological forcing for the hydrologic models arrive at the RFC in many different scales which are then converted to a base scale used in the hydrologic models
- Adequacy of the current data networks shall be addressed for downscaling in STE applications
- Science for scaling shall be improved toward a universal methodology

Data availability

- Data requirement and availability (both quantity and quality) for STE applications and operation shall be rigorously assessed
 - Recent historical QPF and MAP are limited, and have been dynamic with time
 - Basin boundary changes and addition of new basins require recomputing of MAPs and QPFs
- STE applications shall utilize reforecast data as necessary
 - In order to downscale we need several years, if not decades, of forecast data, which requires a re-forecast process of NWP model
 - If NWP model is changed, e.g., to use better physics, a new reforecast data set would be necessary to determine new downscaling relationships

Relationship with deterministic forecast

- STE forecast shall:
 - Be generated in addition to deterministic/control/singlevalue/best-guess forecast
 - Replace deterministic forecast once scientifically and operationally proven
 - Have clear, consistent and easy-to-understand relationship with deterministic forecast for both casual and sophisticated users
- STE operation shall generate ensembles whose median, i.e., 50%, is close to deterministic forecast (see next slides)
- STE operation shall provide a measure of reliability that is easily understood by users

If ensemble mean (~median) is close to truth,

we have reliable, i.e. probabilistically unbiased, ensembles at all ranges of flow

7/12/2006

Hydrologic Ensemble Prediction Group (HEP)

Hydraulic routing & reservoirs

- STE shall account for and propagate uncertainties associated with natural and man-made hydrologic and hydraulic systems, including:
 - regulations, diversions, debris, blockages and ice jams
- STE applications shall address;
 - Hydraulic routings complicates the ability to operate at the segment level
 - Ensembles on autopilot can introduce unrealistic results for reservoirs
 - Consumptive use is a source of large uncertainty, particularly during draining stage
- STE operation shall have tools to analyze and visualize results from hydrologic, hydraulic and/or statistical models

Forecast environment

- STE forecast shall be generated interactively under IFP
 - ESP shall run interactively from any point in time and for individual components of a forecast group
 - The notion of carryover shall be reexamined
- Generation and viewing of ensemble forecasts shall be controlled by a switch to allow basic tuning of the model before introducing ensembles into the picture
 - Balance rivers without ensemble forecasts
 - Switch on ensemble forecasting and look at rivers again
 - If deterministic forecast is, e.g., higher than 2% of ensemble, modify deterministic and/or ensemble for a particular location
- IFP shall allow, through a switch, selection of MODs for deterministic, ensemble or both
- STE forecast process shall utilize a mix of proven automatic DA and forecaster MODs
 - Automatic DA reduces the apparent conflicts of wanting control over the output (tweaking the results) vs. maintaining ensembles that are dynamically and statistically consistent
- Capitalize on CHIPS for development and operation of the above functions

Visualization & run-time modification (MOD)

- Visualization tools shall be used to provide ensemble and probabilistic information within the IFP framework
- Displays of forecast ensembles shall include an overlay of historical ensembles and ranges
 - Forecasters need them to get some idea of possible adjustments to the distribution plots
- Drawing tools shall be used to redraw forecasts in problem cases
 - To adjust distributions operationally when models are deficient
 - Necessary for timeliness and expediency

Product generation

- STE operation shall have the software that will produce graphics and text output in a user friendly manner (e.g., xsets/hydrograph creation software)
- STE operation shall allow the users to create their own products on the fly
- STE shall address OFS not writing information back to the processed DB until the segment is exited
 - This prevents product and information generation while looking at the IFP display

Data assimilation (DA) & MOD

- DA shall be used to provide guidance for MODs
- STE operation shall have:
 - ability to trace what DA did
 - capability to undo or nudge differently
- STE operation shall re-examine the notion of and complementarity between DA and MODs, and their impacts on forecast products
 - There will always be times when a forecaster needs to drive the model to the appropriate outcome
 - As the models and forecast systems get more complex, forecasters do not have the time to do all the driving and need more guidance to do the driving
- Implementation of DA capabilities shall be based on extensive verification of them
 - RFCs need to be in the decision to buy off on it

Transparency of forecast system

- STE applications shall be "white boxes"
 - The system shall have full transparency for the forecasters
 - The system shall provide summary views of inputs and model internals but with the capability to drill down and view detailed information
 - Essential for quality control and debugging
- STE applications shall include smart tools to assist in diagnosis of the ensemble inputs, DA, and results

Verification

- STE shall provide and improve verification capabilities for both ensemble and deterministic forecasts
 - Without verification, one cannot say whether, e.g., ensemble mean is any better or worse than deterministic forecast
- STE shall be verified using the Ensemble Verification Program (EVP) as the primary tool
- STE shall be verified against climatology and other reference forecasts
- Verification outputs shall be translated into lay person's terms

Products

- STE forecast shall be generated in both graphical and text products
- STE shall address the need for customer buy-in of the products
 "So how good are you guys anyway?" (see next slide)
- STE shall address the need for a measure of reliability that is easily understood by users (e.g., 50% or median)
- STE shall improve reliability of forecasts
 - Is, e.g., the 10% exceedance number really exceeded only 10% of the time?
- STE shall develop meaningful displays for end-users to illustrate the model inputs such as precipitation and model QPF (focus group requirement)
- STE operation shall generate SHEF output for selected confidence levels as tabular information in relational database at WFOs (or provide other means of having data readily available in AWIPS database)
- STE forecasts shall be easily accessible from the AHPS website

Conveying past performance in STE product by appending verification plots

Hydrologic Ensemble Prediction Group (HEP)

Data storage & management

- STE operation shall keep its forecasts distinct, which will require new data storage and handling techniques
- STE operation shall manage ensemble and probabilistic information for generation of STE products and guidance
- STE shall seek new and innovative approaches to deal with large increases in data volume

Training

- Training shall be provided to the producers and users of STE forecasts
- Tools shall be developed for self-learning

Computing power

- STE applications shall have computing power necessary to support:
 - Interactive use (e.g., be able to rerun small pieces of forecast groups in a few seconds)
 - Large-volume data processing
 - Ensemble hindcasting
 - Ensemble DA
 - Service backup

Keeping up with science evolution

 STE applications shall be flexible and modular to be able to adapt relatively easily to the changes in science (e.g., model changes) and operational procedures

Envisioned ensemble forecast system

- The next 3 slides show;
 - The envisioned ensemble forecast system that:
 - Interfaces with IFP, OFS and DA, and runs ESP in the forecast mode
 - Interfaces with OFS and DA, and runs ESP in the hindcast mode
 - Capitalize on CHPS (to be determined)
 - The existing ensemble forecast system for comparison
 - The existing deterministic forecast system for reference

Targeted Ensemble forecast system

Existing ensemble forecast system

Existing deterministic forecast system

End of slides