
 SQL and DDL Tidbits May 14, 2013

DDL Statements

"--" signifies a comment

Defining a primary key

ALTER TABLE location ADD CONSTRAINT loc_pk PRIMARY KEY (lid);

 - automatically defines columns in a primary key as NOT NULL

 - max number of chars in constraint name = 63

Defining a foreign key

ALTER TABLE location ADD CONSTRAINT location_tz_fk FOREIGN KEY (tzone)

 REFERENCES TimeZone(tzone) MATCH FULL;

Renaming a Database

ALTER DATABASE oldname RENAME TO newname;

 - user must be owner of the database AND have CREATEUSER privilege

Gotcha

"CREATE TABLE tablename (column_name ..." generates syntax error

 - extra space not allowed between “(“and “column_name”

“Not Equals” Symbol

< > (no space between symbols)

!= is deprecated

Database Level Privileges

if user A creates a db, then user B automatically has access to it

 - users A and B must be known to psql through the createuser command

Table Level Privileges

if user A creates a table, users have NO privileges on the table (unless they are granted)

(see Douglas pp741-742)

Date and Time Datatypes

SELECT CURRENT_TIMESTAMP generates current time

data type TIMESTAMP defaults to TIMESTAMP WITHOUT TIME ZONE

internally, date/times are in UTC

all date and time datatypes have precision of microseconds

DATE value = “08-01” is not valid

 – must specify year to create valid DATE field

Date and Time Functions

select * from precip where obstime > 'today';

 - today surrounded by single quotes

select * from TextProduct

 where EXTRACT (DAY from CURRENT_TIMESTAMP - postingtime) < 5;

To list all records in the Height table which were posted in the last 20 minutes:

 SELECT * FROM Height WHERE obstime > (now() - interval ’20 min’);

To insert a record containing a NULL DATE value through an INSERT statement:

 INSERT INTO tablename VALUES(…,NULL,…);

In ecpg, recommend using dttoasc only. dttofmtasc function exists but does not work

properly.

Two more examples:

select timestamp '2010-06-26 00:00:00' - timestamp '2008-11-07 00:00:00';

 ?column?

 596 days

(1 row)

select justify_interval(timestamp '2010-06-26 00:00:00' - timestamp '2008-11-07

00:00:00');

 justify_interval

 1 year 7 mons 26 days

(1 row)

Column Types

INT2

FLOAT4

FLOAT8

FLOAT is the same as FLOAT8

A cast from float to int rounds, it doesn't truncate.

Column Naming

- column names must begin with a letter or underscore

- max of 64 char

JOINS

Postgres has LEFT/RIGHT/FULL OUTER joins available. It uses the ANSI standard

format for OUTER join.

- many views in IHFS db contain the keyword OUTER

- Example:

 CREATE VIEW locview (...

SELECT ...

FROM location x0 left outer join riverstat x1

ON x0.lid = x1.lid

WHERE … ;

Statement Timing

SET STATEMENT_TIMEOUT TO nn;

 - where nn = number of milliseconds

 - server run-time configuration parameter

 - value of 0 (default) turns off timer

 - see Section 16.4.7.1 of PostGreSQL 7.4.7 Documentation

Cursors

EXEC SQL CLOSE statement closes the cursor and frees all resources related to the

cursor

Postgres Version 8.3 has "WHERE CURRENT OF … " clause for cursors. This was

available in Informix.

Must close a cursor before reopening it

Checking Query Plans

EXPLAIN SELECT … ;

EXPLAIN ANALYZE SELECT …;

If multiple indexes are defined on a table, the optimizer determines which index to use.

“A two-column index is bigger and hence more expensive

to search than a one-column index --- perhaps quite

substantially so …”

Character Strings

Character strings in SQL statements must be denoted by single quotes (‘)

Example:

psql: SELECT * FROM height WHERE lid = 'ABCD1';

To select lids from the Location table which begin with lower case characters:

 SELECT lid FROM Location WHERE lid SIMILAR TO ‘[a-z]%’ ;

To change all characters of a column’s values to upper case:

UPDATE <tablename> SET <columnname> TO UPPERCASE (<columnname>);

To list all Location table identifiers with all lower case characters:

 SELECT lid FROM Location WHERE lid ~ (‘[a-z]’);

“~” is a POSIX regular expression operator similar to “LIKE” (See Section 9.6.3)

Select records from the HourlyPP table where any char of the hourly_qc field = D

(D signifies the result of a disaggregation)

(note that the hourly_qc field is defined as char (24))

 SELECT * FROM HourlyPP WHERE hourly_qc ~ (‘D’);

Print only the first X chars of a char column (version 8.3 and later)

create table t1 (g char(10));

insert into t1 values ('abcdefg'),('hijklmno');

select overlay(g placing ' ' from 3 to 10); -- display only the first 2 chars of column g

Temp tables

postgres allows the user to create a temp table with the same name as a real table - the

temp table will "mask" the real table during the session - temp table is dropped at the end

of the session - idea can be used for testing

Cascading Updates and Deletes

as part of a CREATE TABLE statement, a column can be defined as "ON UPDATE

CASCADE" - this will cause updates to "cascade" from parent table to child table - can

also be set up for deletes - see Momjian pp161, 162

Granting Superuser Priviledges

 ALTER USER <username> WITH SUPERUSER

Schemas

To change a schema in psql:

 set search_path to <schema_name>;

Locking Tables

postgres has a LOCK statement but has no UNLOCK statement - ending the transaction

 unlocks the table

Dropping Roles

Execute “REASSIGN OWNED …” followed by “DROP OWNED…” to remove a role

Must be done for each database

NULLs

For unique indexes, NULLs are considered not equal to each other, and multiple NULL can

be stored in a unique index:

CREATE TABLE uniqtest (x INTEGER);

CREATE UNIQUE INDEX i_uniqtest ON uniqtest (x);

INSERT INTO uniqtest VALUES (1), (NULL), (NULL);

SELECT * FROM uniqtest;

 x

 1

 (null)

 (null)

Other Tidbits

Return the IP address of computer that postgres is running on

 SELECT inet_server_addr();

Returning only the “first” 10 records of a SELECT:

 SELECT * FROM … LIMIT 10;

Note that without an “order by” clause, this query is free to return any 10 records. Over

the course of time, if additional inserts and deletes are done on the table, the query may

return a different set of records.

Returning unique column values

 SELECT DISTINCT lid FROM CurPP;

Q: I have a table column I want to change from a

boolean to a smallint changing false to 0 and true to

1. How do I do that?

A: ALTER TABLE ALTER col_name TYPE SMALLINT

 USING CASE WHEN col_name THEN 1 ELSE 0 END;

Changing the size of a column:

Until now, I was not familiar with any sensible mecha-

nism to simply change the size in PG. But yesterday,

Tom Lane himself suggested something ubercool in the

list.

Let's assume for the sake of simplicity that your table

is called "TABLE1" and your column is "COL1". You can

find the size of your "COL1" column by issuing the fol-

lowing query on the system tables:

SELECT atttypmod FROM pg_attribute

WHERE attrelid = 'TABLE1'::regclass

AND attname = 'COL1';

atttypmod

24

(1 ROW)

This means that the size is 20 (4 is added for legacy

reasons, we're told). You can now conveniently change

this to a varchar(35) size by issuing this command:

UPDATE pg_attribute SET atttypmod = 35+4

WHERE attrelid = 'TABLE1'::regclass

AND attname = 'COL1';

UPDATE 1

Note that I manually added the 4 to the desired size of

35 again, for some legacy reasons inside PG. Done.

That's it. Should we check?

\d TABLE1

TABLE "public.TABLE1"

COLUMN | TYPE | Modifiers

--------+-----------------------+-----------

COL1 | CHARACTER VARYING(35) |

How can I get list of views that are using given column in table?
 SELECT distinct dependee.relname

 FROM pg_depend

 JOIN pg_rewrite ON pg_depend.objid = pg_rewrite.oid

 JOIN pg_class as dependee ON pg_rewrite.ev_class =

dependee.oid

 JOIN pg_class as dependent ON pg_depend.refobjid =

dependent.oid

 JOIN pg_attribute ON pg_depend.refobjid =

pg_attribute.attrelid

 AND pg_depend.refobjsubid = pg_attribute.attnum

 WHERE dependent.relname = <tablename>

 AND pg_attribute.attnum > 0

 AND pg_attribute.attname = <columnname>;

--

Dealing with big tables:

Q: I have a table which currently has about 500 million

rows. For the most part, the situation is going to be

that I will import a few hundred million more rows from

text files once every few months but otherwise there

won't be any insert, update or delete queries. I have

created five indexes, some of them multi-column, which

make a tremendous difference in performance for the

statistical queries which I need to run frequently

(seconds versus hours.) When adding data to the table,

however, I have found that it is much faster to drop

all the indexes, copy the data to the table and then

create the indexes again (hours versus days.) So, my

question is whether this is really the best way.

Should I write a script which drops all the indexes,

copies the data and then recreates the indexes or is

there a better way to do this?

A: Yes, that's actually recommended practice for such

cases.

--

varchar vs varchar (n)

Q: Is there any practical difference between defining

a column as a varchar(n) vs. a varchar vs. a text

field?

A: No except for your already noted exception that you

can limit the size of varchar.

Rewriting Tables On Disk

VACUUM FULL is one of three ways a table can get rewritten. Besides ALTER TABLE, the

other way is with the CLUSTER command. An ALTER TABLE is the only one of the three that

may rewrite the table - the other two are guaranteed to do so.

To determine if a table was rewritten, use the internal system column ctid.

Naturally, you do not want to perform this test using your actual table. In this example, we

will create a simple dummy table. As long as the column types are the same as your real

table, you can determine if the change will do a table rewrite on your version of PostgreSQL.

The aforementioned ctid column represents the physical location of the table's row on disk.

This is one of the rare cases in which this column can be useful. The ctid value consists of two

numbers: the first is the "page" that the row resides in, and the second number is the slot in

that page where it resides. To make things confusing, the page numbering starts at 0, while

the slot starts at 1, which is why the very first row is always at ctid (0,1). However, the only

important information for this example is determining if the ctid for the rows has changed or

now (which indicates that the physical on-disk data has changed, even if the data inside of it

has not!).

To display the ctid column:

-- Note: the ctid column is never included as part of '*'

postgres=# SELECT ctid, * FROM babies;

 ctid | gender | births

-------+--------+--------

 (0,1) | Girl | 1

 (0,2) | Boy | 1

(2 rows)

--

Example of an update query to update multiple columns in tbl1 from

columns in tbl2:

UPDATE tbl1

SET col3=t2.col3, col4=t2.col4, col5=t2.col5

FROM tbl2 t2 WHERE t2.col1="criteria"

