RES-J Joint Reservoir Model

- Designed as a network model to solve a system of reservoirs, reaches, and nodes. FL
- Fully integrated within NWSRFS as an operation in the calibration, forecast, and extended streamflow prediction systems
- Facilitates long-term simulations of individual reservoirs or systems of reservoirs
- Easily extended by adding new modeling methods
- Uses explicit simulation approach

Operations	Table:
LAG-K	KLGN1
SAC-SMA	LOCAL
UNIT-HG	LOCAL
ADD-SUB	INF_TOT
RES-J	WINSTON
PLOT-TUL	INFLOW
PLOT-TUL	RES_OP

Riverside Technology, inc.

The Reservoir Operations Problem

- NWSRFS/Hydrologic modeling relies on a sequential computation of natural hydrologic phenomenon
- Rain/Snow > runoff > hydrograph development > hydrograph transformation > hydrograph combination/superposition
- (LAG-K can effectively simulate a natural lake)
- Active reservoir operations intentionally alter the natural sequence
- Flood control/streamflow augmentation; avoiding summation of peak flows; hydropower operations
- New factors involve seasons, rules, forecasts, downstream conditions, other reservoirs, etc.
- Operations are based on states both internal and external to the forecast system, and upstream and downstream of the reservoir.
- Models evolve from storage routing to rules to systems

Explicit Solution Considerations

- Model states at the beginning of the time step are used to determine release at the end of the time step
- Model states at the end of the time step are computed based on inflows and outflows averaged over the time step
- Eliminates need to input mean inflows to the model; simplifies the solution technique
- May require smaller time steps; requires special handling to avoid numerical instabilities;
- Correct time step a function of rate of change of storage, inflow magnitude, rate of change of inflow, rate of change of outflow

RES-J Input Sections

Riverside Technology, inc.

RES-J Time Series Information

- All time series used in RES-J must be included in the segment definition containing the RES-J operation
- All time series used in RES-J must be identified separately within the RES-J model input section
- Time series can be assigned aliases for reference throughout the model

LOYALHANN	A Re	serv	oir		
1 1970	12 1	980	ENG		
DEF-TS					
SLTP1	RQ	IN	6		INPUT
agl/RQIN/	sltp	70_0	0.rqin	106	
SLTP1	PE	LV	6		INPUT
agl/PELV/	sltp	70_0	0.pelv	706	
SLTP1	RQ	OT	б		INPUT
agl/RQOT/	sltp	70_9	4.rqot	:06	
SLSIMRL	SQ	IN	6		OUTPUT
agl/RQIN/	loys	imre	l.sqir	106	
SLSIMEL	SP	EL	6		OUTPUT
agl/PELV/	loys	impe	l.sqir	106	
SLOBSRL	RQ	ME	24		
SLSIMRL	SQ	ME	24		OUTPUT
agl/QME/S	LSIM	RL.S	QME24		
SLSIMEL	SP	EL	24		OUTPUT
agl/PELV/	SLSI	MEL.	SPEL24	1	
END					
RES-J	S	LTP1			
TIMESERIE	S				
TIMESERIE	S				
TIMEST	ΕP	6			
INPUT	SLT	P1	RQIN	6	TOT_INFL
INPUT	SLT	'P1	PELV	6	OBS_ELEV
OUTPUT	SLS	IMRL	SQIN	6	SIM_RELS
OUTPUT	SLS	IMEL	SPEL	6	SIM_POOL
ENDTIMESE	RIES				
TOPOLOGY					
RESERV	OIR	LO	YALHAI	INA	
ENDTOPOL	OGY				

PARAMETERS

Riverside Technology, inc.

RES-J Topology Information

- Topology defines the connectivity of the network components: Reservoirs, Reaches, Nodes
- Components must be defined from upstream to downstream
- Each component may have many upstream components
- Each component may have at most one downstream component

RES-J Topology Example

TOPOLOGY

RESERVOIR	FLCM2		
RESERVOIR	KBNM2	EL CM2	
REACH	ROARNG1 BELOW FLCM2	FLCIVIZ	•
REACH	EBR_ROAR BELOW KBNM2		
NODE	BRCM2 BELOW ROARING BELOW EE	BR_ROAR	KBNM2
REACH	ROARNG2 BELOW BRCM2		BRCM2
RESERVOIR	RRDM2 BELOW ROARNG2	DDU	
REACH	ROARNG3 BELOW RRDM2		
NODE	WNTM2 BELOW ROARNG3		(
ENDTOPOLOGY			VNTM2

Riverside Technology, inc.

RES-J Parametric Information

- Components
 - Reservoirs
 - Reaches
 - Nodes
- Methods
 - ADJUST
 - BALANCE
 - LAGK
 - MAXDECREASE
 - MAXINCREASE
 - MAXSTAGE
 - RAINEVAP

- SETSUM
- SETWITHDRAW

Reservoir Component Parameters

- Input and output time series
- Elevation versus storage table
- Initial pool and release values
- Minimum pool value
- Constants

Reservoir Component Parameters

PARAMETI	ERS			
UNITS	ENGLIS	H		
RESI	ERVOIR	WINSTON		
	CONSTAN	IT WINSTO	ON.CONS_	POOL 205.0
	TSINPUT	INFLC	DW WIN_I	NFLOW
	TSINPUT	POOL	WIN_OBS	_POOL
	TSOUTPU	JT RELEZ	ASE WIN_	SIM_REL
	TSOUTPU	T POOL	WIN_SIM	_POOL
	TABLE	ELEV_STO	OR	
		72.0	0.0	
		205.0	50000.0	
		210.0	55000.0	
		212.0	60000.0	
	ENDTABL	Έ		
	INITIAI	POOL	206.0	
	INITIAI	RELEASE		1200.0
	INITIAI	WITHDRAV	V	85.0
	MINPOOL		75.0	
	MINRELE	ASE		15.0
ENDI	RESERVO	IR		

Reach Component Parameters

Node Component Parameters

- Input time series
- Output time series

RES-J Adjust Method Parameters

The ADJUST method uses observed instantaneous discharges, mean discharges, and pool elevation values to adjust the simulated values to be consistent with the observations.

- Input time series
- Number of time steps for blending from an observed value
- Simulated pool is adjusted at each time step
- Consider a feature to adjust only the carryover values

Adjust Method Example

ADJUST WINSTON WINSTON_ADJUST OBSERVEDPOOL WIN_OBS_POOL BLEND 5

ENDADJUST

Balance Method Parameters

The BALANCE method computes reservoir releases by balancing the available storage among multiple reservoirs.

- Option to balance by volume or percent of flood storage
- Minimum and maximum pool elevations for each reservoir
- Minimum release for each reservoir

Balance Method Example

BALANCE	Madde	n		Mad_Gat_Bal	
V	OLUME				
RI	ESERVOIR	Gatun			
	VALUE	S	LOWER	POOL	135
			UPPER	POOL	140
			MINREI	LEASE	12.4
	ENDVA	LUES			
El	NDRESERVOI	R			
RI	ESERVOIR	Madder	า		
	VALUE	S	LOWER	STORAGE	1200000
			UPPER	STORAGE	1900000
			MINREI	LEASE	11.8
	ENDVA	LUES			
El	NDRESERVOI	R			
ENDBALAI	NCE				

RES-J LAGK Method Parameters

The LAGK method performs reach routing using the Lag and K routing procedure.

- Lag time in hours
- K coefficient (constant or a table of outflow versus K)
- Inflow carryover information
- LAG-K is applicable only to reach components
- useful for constructing valid networks; permitting operations based on downstream outcomes.

LAGK Method Example

Riverside Technology, inc.

MAXDECREASE/MAXINCREASE Method Parameters

- The MAXDECREASE / MAXINCREASE method limits the maximum decrease / increase in reservoir release from one time-step to the next
- MAXDECREASE Maximum allowable decrease in flow (per time step)
- MAXINCREASE Maximum allowable increase in flow (per time step)

MAXDECREASE/MAXINCREASE Method Example

MAXDECREASE WESTOVER WEST_DECR DECREASE 400. ENDMAXDECREASE

MAXINCREASE WESTOVER WEST_INC INCREASE 100. ENDMAXINCREASE

RULES

. [WESTOVER.POOL < 1241.7] :: MAXINCREASE WEST_INC

Maxincrease Method Example

MAXSTAGE Method Parameters

The MAXSTAGE method computes a restricted reservoir release to control the stage at a downstream control point

- Table of rating curve values
- Maximum allowable stage at the downstream control point
- Minimum allowable reservoir release
- Convergence criterion
- Downstream node identifier
- Maximum number of iterations for solving

MAXSTAGE Method Example

Riverside Technology, inc.

MAXSTAGE Method Example

am MT Dag

MAXSTAGE WINSTON ST_ML	RCZ
TABLE MLRC2_RATING	
1 50	
5 200	Maxstage Method
10 450	
15 1100	3000
20 3000	
ENDTABLE	2300 Outflow Outflow w/MAXSTAGE
MAXIMUMSTAGE 16.1	σ 2000
MINRELEASE 250	
DSCONTROL MLRC2_GAGE	
MAXITERATIONS 15	
ENDMAXSTAGE	
	500
	8/31 9/2 9/4 9/6 9/8 9/10 9/12

TITATATA

RAINEVAP Method Parameters

The RAINEVAP method computes the change in reservoir storage resulting from rain and evaporation occurring over the lake surface.

- Time series identifier for observed evaporation and observed rainfall
- Table of average evaporation values by date
- Optional diurnal distribution of daily evaporation
- Loss is computed based on reservoir surface area at beginning of time-step

RAINEVAP Method Example

RAINEVAP WINSTON WN_RAINEV PRECIP TSINPUT ObservedPrecip WIN_MAP ENDPRECIP EVAP VALUES 01/01 0.13 04/01 0.20 07/01 0.25 0.3 0.3 0.25 0.15 10/01 0.18 **ENDVALUES ENDEVAP** ENDRAINEVAP

SETELEVATION Method Parameters

The SETELEVATION method computes a reservoir release in order to achieve a prescribed reservoir pool elevation. The elevation can be specified in a table as a function of date or can be given as a time series.

- Observed pool elevation time series
- Reservoir rule curve information in date/elevation pairs
- Period for blending between rule curve values and time series values
- Period for blending between rule curve dates
- Interpolation option
- (interpolation and date blending are mutually exclusive)

SETELEVATION Method Example

SETELEVATION	WINSTO	N WIN.FL	OOD
TSINPU	T OBSE	ERVEDPOOL	WIN_POOL
VALUES			
	01/01	205.0	
	04/01	208.0	
	07/01	210.0	
	10/01	215.0	
ENDVAL	UES		
BLEND		30	
BLENDT	'S	8	
ENDSETELEVAT	ION		

SETMAX / SETMIN Method Parameters

The SETMAX / SETMIN methods selects the maximum / minimum release (or withdrawal) from a list of previously computed methods.

 Other method identifiers from which to compute maximum / minimum output variable

SETMAX / SETMIN Method Example

SETMIN	WINSTON	WIN_MIN		
	SETRELEASE	WINSTON	WIN.FLOOD	
	SETELEVATION	WINSTON	WIN_RULE	
	MAXSTAGE	WINSTON	ST_MLRC2	
ENDSET	MIN			

SETMAX	WINSTON	WIN_MAX		
	SETRELEASE	WINSTON	WIN_SPILL	
	SETMIN	WINSTON	WIN_MIN	
ENDSET	MAX			

Riverside Technology, inc.

SETRELEASE Method Parameters

The SETRELEASE method computes reservoir release based on a table that specifies release as a function of date and pool elevation, or as a prescribed release entered as a time series.

- Observed release time series
- Table of elevation/release values by date
- Period for blending between table values and time series values
- Period for blending between elevation/release table dates
- Interpolation between elevations and/or dates

SETRELEASE Method Example

SETRELEAS	SE	Madden		Power_F	Rel		
TS	INPUI	:	Observe	ed_Rel		MAD_OBS	S_POWER
VA	LUES						
EL	ιEV	215	220	230	240	250	ENDELEV
01	/01	300	300	350	400	500	
04	/01	310	310	375	450	550	
07	/01	350	400	450	500	750	
10	/01	310	310	375	450	550	
EN	DVALU	JES					
BL	END	0					
BL	ENDTS	5	0				
NO	RMAL						
ENDSETREI	LEASE						

SETSUM Method Parameters

The SETSUM method computes reservoir release (or withdrawal) as the sum of previously computed reservoir release (or withdrawal) methods.

- Method identifiers from which to compute sum of output variables
- Valid methods are:
 - SETMAX
 - SETMIN
 - SETRELEASE
 - SETWITHDRAW

SETSUM Method Example

SETSUM Madden Power&Spills SETRELEASE Madden Power SETRELEASE Madden Spill ENDSETSUM

SETWITHDRAW Method Parameters

The SETWITHDRAW method computes reservoir withdrawal based on a table that specifies withdrawal as a function of date and pool elevations, or as a prescribed withdrawal entered as a time series.

- Observed withdrawal time series
- Table of elevation/withdrawal values by date
- Period for blending between elevation/withdrawal table dates
- Period for blending between elevation/withdrawal table values and time series values

SETWITHDRAW Method Example

SETWITHDRAW	Madden	ľ	ſuni
TSINPU	Г	Observe	d_Muni Mad_Muni
VALUES			
	ELEV	80.0 E	ENDELEV
	01/01	125	
	04/01	130	
	07/01	120	
	10/01	310	
ENDVAL	JES		
BLEND	0		
BLENDT	5	0	
NORMAL			
ENDSETWITHDRA	W		

RES-J Rules Information

Rules are specified using [*expression*] - [*method*] syntax

If expression evaluates to TRUE, the listed methods are executed

Use of compound expressions is supported

Expressions are written in terms of component states, dates, constants, and Boolean operators

RES-J Rules Examples

RULES

#Executed every time step [TRUE]

::SETWITHDRAW	Madden	Mad_Muni
::SETSUM	Madden	Power&Spills
::LAGK	Chagres	ChagresLAGK

#Conditional Execution
[Madden.Pool < Madden.Drought]
 ::SETELEVATION Madden Mad_pool_205</pre>

ENDRULES

