
 Creating a PostgreSQL Database Jun 13, 2012

Two methods for creating a database:

(1) At the command line

 createdb -U postgres -D pgdata_local <db_name>

- user must have previously been granted permission to create databases

 - createdb is a “wrapper” for “psql -d “

The “-D” option creates the database in the PGDATA_LOCAL partition. Note the

absence of a $ in front of the PGDATA_LOCAL partition name. The

PGDATA_LOCAL partition is sized at 32 GBytes.

If a database is created without the “-D” option, it will be created in the PGDATA

partition which is only .5 GBytes in size. If this partition fills up, the postgres engine will

crash!

Beginning with AWIPS OB8.3, the partition name must be specified as lower case

(pgdata_ihfs, pgdata_local, etc)

At RFCs, the IHFS db resides in the pgdata_ihfs partition.

(2) Using the psql utility

 psql db_name1

CREATE DATABASE db_name2;

 - open psql utility for db_name1 and create a new db with name = db_name2

Get a list of previously created databases with “psql -l”.

Renaming a Database

 ALTER DATABASE <old_name> RENAME TO <new_name> ;

Database Privileges

If user A creates a db, then user B automatically has access to it. Users A and B must be

known to postgres through the “createuser” command. This was different in Informix. In

Informix, if user A created a db, then user B did NOT have access to it unless granted

CONNECT, RESOURCE or DBA privilege by user A.

Max length of database name = 64 char

Creating Local Databases at RFCs

In AWIPS OB6, the IHFS and damcrest databases were created in the PGDATA_IHFS

partition. All local databases at the RFCs should be created in the PGDATA_LOCAL

partition.

The following statement will create a database in the PGDATA_LOCAL partition:

 createdb -D pgdata_local dbname

Note the absence of a $ in front of the PGDATA_LOCAL partition name.

The PGDATA_LOCAL partition is sized at 32 GBytes.

If a database is created without the “-D” option, it will be created in the PGDATA

partition which is only .5 GBytes in size. If this partition fills up, the postgres engine will

crash!

Note that in AWIPS OB8.3 and earlier, partition names were specified as lower case.

Determining the Size of a Database

On OB9.2 systems (using postgres Version 8.2.6), the following SQL statement can be

used:

psql db_name -- db_name can be any database

SELECT pg_database.datname,

pg_size_pretty(pg_database_size(pg_database.datname)) AS size

FROM pg_database;

The size of the database reported with the above SQL will normally be larger than the

size of a dump file of the same db. This is because the above SQL includes the size of all

indexes. The dump file does not contain the indexes. It only contains the “CREATE

INDEX …” statements for creating the indexes.

The pg_size_pretty function makes the size value more human readable.

An alternative is

SELECT pg_size_pretty(pg_database_size(current_database())) AS

human_size, pg_database_size(current_database()) AS raw_size;

which prints both the raw size and human readable size

Error Attempting to Create a Database

We have seen some cases where the creation of a new database failed because a postgres

job was running which had the system database “template1” open. This database must

not be in use by another user when attempting to create a new database. Doing a

 ps -ef | grep post

on the database server machine will show if a job has template1 in use.

Migrating Databases to the 8.2.x Server

One difference between the 7.4.8 server and the new 8.2.x server is the default encoding

type for databases. The 7.4.8 server had an encoding type of “SQL_ASCII” as its

default. The 8.2.x server uses “UTF-8” as its default type. For an explanation of these

encoding types, see Section 21.2.2 of the postgres 8.2.x documentation.

The default encoding type can be changed in the postgresql.conf file or it can be defined

when postgres is initialized using the initdb command. At OHD, the default value of

“UTF-8” is used. At AWIPS sites, the default encoding type is “SQL_ASCII”.

At OHD, a consequence of the above change in default encoding is that dumping some

databases on the 7.4.8 server and then attempting to restore them on the 8.2.x server

MAY RESULT IN LOSS OF DATA RECORDS. Records in tables such as the Descrip

and Observer tables having special characters such as “/” and “#” will not be handled

properly when an insert is attempted on the 8.2.x server. This problem will result in all

records being lost in these tables.

To get around this problem, the user must explicitly set the encoding type to

“SQL_ASCII” using the “-E” option in the CREATEDB statement when creating the

database on the 8.2.x server. For example

 createdb -U postgres -E SQL_ASCII hd_ob83fwr

will create a database which can be loaded using the “psql” command as has been done

previously without loss of data.

This problem does not occur at AWIPS sites which use “SQL_ASCII” as the default

encoding. At AWIPS sites, databases created using the “createdb” command do not need

to include the “-E” option.

Database Name With Upper Case Letters or Mixed Case

Postgres automatically “folds” a database name to lower-case unless it is surrounded with

double quotes (“) like

 dropdb -U postgres “DB_Name”

This “auto fold” to lower case also occurs for table names and field names.

Note that the SQL standard is to “auto fold” to upper case.

Checking for Processes Open on a Database

In window 1:

psql template1

SELECT * FROM pg_stat_database;

Result: numbackends = 0 for database hd_ob82empty

In window 2:

psql hd_ob82empty

In window 1:

SELECT * FROM pg_stat_database;

Result: numbackends = 1 for database hd_ob82empty

Note that the parameter “stats_start_collector” must be set to true in the postgresql.conf

file for the pg_stats_database table to be populated. This is the default value.

List top 10 tables, indexes in MBytes

select relname,((relpages*8)/1000) as mb from pg_class order by mb desc limit 10;

Dropping a Database

You're about to move a database to archival storage, possibly to /dev/null, but pesky

users keep talking to it.

So you try

DROP DATABASE foo;

but you get

ERROR: database "foo" is being accessed by other users

DETAIL: There are 2 other session(s) using the database.

Next, you try killing off all the connections to foo, but those pesky users just keep re-

connecting! What's to do? Here's what:

UPDATE pg_catalog.pg_database SET datallowconn=false WEHRE datname='foo';

SELECT pg_catalog.pg_terminate_backend(procpid) FROM pg_catalog.pg_stat_activity

WHERE datname='foo';

DROP DATABASE foo;

All gone!

Upgrading

Two things that frequently bite people during an

upgrade:

1. Forgetting to ANALYZE the database after reload.

Autovacuum would probably fix that for you eventually,

but it's better to just issue one manually.

2. Creating the new database with the wrong locale. I

see a bunch of LIKE operators in the query plans you

show later, so I'm wondering if you went from C locale

to a non-C locale and that defeated LIKE optimizations

that used to work.

