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1. INTRODUCTION

Forecasting within the coastal zone (i.e., within 200
km of a coastline) continues to be a NOAA priority and
includes wide ranging marine-related weather issues.
As the need for better integrated system models and
observations grows, so does the challenge of assimilat-
ing the myriad of data streams. Despite advances in
short-term forecasting, issues remain. For example,
relatively significant gradients in the near-shore sea
surface temperatures (SSTs) can impact regional
weather including boundary layer evolution, mesoscale
features such as the sea breeze, stratocumulus devel-
opment (e.g., Young and Sikora, 2003), coastal show-
ers, etc. In addition to these issues, recent work examin-
ing model output winds from European Centre for Me-
dium Range Weather Forecasts (ECMWF) has shown
that higher resolution SSTs can significantly impact the
surface wind stress field (Chelton and Wentz 2005;
O’Neill et al. 2005, Chelton 2005).

In the absence of clouds (and sun glint), IR-based
satellite sensors provide reliable radiances from which
bulk (i.e., upper meter) SST estimates are derived. Sat-
ellite derived SSTs (from multiple platforms) are a sig-
nificant source of high resolution data in operational
analyses (e.g., He et al., 2003; Thiebaux et. al. 2003)
Because of coverage and/or data latency issues, opera-
tional systems require a first-guess field which may be a
composite (e.g., weekly mean) or a previous analysis.
While multi-platform SST analyses are fairly common,
typical real-time data assimilation challenges such as
bias, error and length scale specification, cloud mask-
ing, and data latency problems remain. While a combi-
nation of both IR and microwave estimates of SSTs can
mitigate the impact of clouds on an SST analysis, mi-
crowave-derived SSTs are of relatively coarse resolu-
tion (on the order of 50 km). In contrast, GOES SSTs
can provide temporal resolution unavailable from polar
orbiters, at spatial resolutions of 4 km, and have been
shown to have comparable errors to that of the higher
resolution AVHRR SSTs (Walker et al. 2003).
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As part of a COMET funded project, the Florida In-
stitute of Technology is building a near real-time opera-
tional SST analysis system. This system is designed to
provide high resolution SST analyses in lieu of the rela-
tively coarse National Centers of Environmental Predic-
tion/Marine Modeling and Analysis Branch (NCEP/
MMAB) Real-Time Global Sea Surface Temperature
(RTG-SST) analysis which is currently assimilated into
the Advanced Regional Prediction System (ARPS) by
the National Weather Service (NWS) in Melbourne, Flor-
ida. The NWS in Melbourne, Florida is cycling the ARPS
four times per day over an approximate 700 km? domain
that includes the eastern Gulf of Mexico and the north-
west Bahamas (e.g., Fig. 1). The FIT analysis system
combines high resolution satellite SST data obtained
from both the GOES-12 and the Moderate Resolution
Imaging Spectroradiometer (MODIS) on board the Terra
and Aqua satellites.

Preliminary SST analyses are running operationally
at the Florida Institute of Technology (FIT) with current
efforts here focused on: 1.) latency-related diurnal SST
adjustments, and 2.) determining spatially varying error
covariances, and decorellation length scales. Evaluation
of the impact of high-resolution SSTs on short-term
model forecasts (i.e., on the order of a day), and an
intercomparison project involving FIT generated GOES
composites, SPORT MODIS composites, and the RTG-
SST analysis are discussed in related papers (LaCasse
et al., 2006; Haines et al., 2006).

2. DATA

i. GOES-12

The GOES (bulk) SST data is provided by NOAA
National Environmental Satellite, Data, and Information
Service (NESDIS). The product is derived from the sat-
ellite radiances using two of the five available channels
(3.9 and 11um). 30 minute data are combined to pro-
duce hourly SST files. Removal of both cloud-
contaminated radiances (via a cloud mask) and radi-
ances that are affected by sun glint at 3.9 ym, precede
application of a regression-based SST retrieval algo-
rithm (Maturi et al. 2004). Area Man computer Interac-
tive Data Access System (McIDAS) files are sub sam-
pled (Maturi, personal communication) to produce the 6



km horizontal resolution lat/lon grids. The data are avail-
able hourly in near-real time (i.e., 4-hour lag).

ii. MODIS

The MODIS (bulk) SSTs are available twice daily
(within the ARPS domain during the following intervals:
3-4 UTC, 7-8 UTC, 15-16 UTC, and 18-19 UTC) from
both the AQUA and TERRA platforms, are of high spa-
tial resolution (1 km), and can be accessed in near real-
time via direct broadcast from the University of Wiscon-
sin. The SST algorithm is based on IR retrieval method-
ology and uses both mid and far bands which are cor-
rected for atmospheric absorption and cloud screened
(Brown et al. 1999). The live broadcast Wisconsin SST
retrieval algorithm differs from the “official” algorithm
developed by the MODIS Science Data Support/Ocean
Science Teams and archived by the Goddard Space
Flight Center DAAC. The modified Wisconsin algorithm
is part of the International MODIS AIRS Processing
Package (IMAPP). In limited evaluation, the IMAPP al-
gorithm produced SST estimates that were within 0.5°C
(of the Science Team SSTs) for the daytime product
with smaller differences for the nighttime SST product.
The SSEC IMAPP algorithm is fast and can deliver SST
products via direct broadcast in near real-time (see:
ftp://ftp.ssec.wisc.edu/pub/IMAPP/MODIS/Level-
2/v1.5/SST_DOC.pdf).

iii. Buoy

Although somewhat sparse, buoy day is obtained
from 9 active sites (within the ARPS domain, Fig. 1) via
the National Data Buoy Center online archive at
http://www.ndbc.noaa.gov/. These data are have been
used in separate validation efforts discussed by Haines
et al. (2006) and LaCasse et al. (2006). SST data from
these buoys will also be used for near real-time evaluat-
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Figure 1: National Data Buoy Center (NDBC) buoy
locations within the NWS/ARPS domain. NOAA
buoys (red squares), University of South Florida
Coastal Ocean Monitoring and Prediction System
(red triangles), and C-MAN station (red diamond).

ion of the Florida Tech SST analysis system that is cur-
rently under development.

3. ANALYSIS METHOD

Although we intend to transition to a two-dimensional
variational approach, the first generation FIT SST
analysis employs the Bratseth method (1986) which is
essentially a hybrid analysis — a successive correction
technique that converges to optimum interpolation. Be-
cause of the latter, the method does not require the in-
version of large matrices which can be both computa-
tionally expensive and/or impractical given current com-
puter resources (Sashegyi et al., 1993). Although the
Bratseth method was originally constructed as an itera-
tive two-step process whereby the grid point and obser-
vation point analyses alternate (e.g., see Lazarus et al.
2002), we apply an equivalent but alternative approach
that iterates a correction vector only and relegates the
analysis to a single “one-shot” process (e.g., Kalnay
2003). Because we focus here on the data latency issue
and the determination of analysis parameters, rather
than the analyses themselves the reader is referred to
Zavodsky et al. (2006) more complete description of the
analysis scheme.

4. RESULTS

i. Latency

We are currently examining the quality of the GOES
composites for a period (May 2004) that corresponds to
concurrent/cooperative projects with SPoRT (Haines et
al. 2006, LaCasse et al. 2006). Because it is our inten-
tion to use, in some fashion, the GOES composites as a
first-guess field for the analyses, we compare the statis-
tics of clear versus cloudy scenes. Relevant questions
include:

Does the composite smooth gradients or create
spurious gradients?

What is the impact of diurnal SST variations on the
composites?

What is the contribution of the latency to the total
bias?

In an attempt to address these questions we com-
pare temperature gradient statistics for clear vs. cloudy
scenes. Figure 2 depicts several different estimates of
the mean temperature gradient (°C/km) as a function of
grid separation (Delta X) for May 2004. The “bench-
mark” (i.e., best case scenario) is given by the red curve
which represents cases with zero latency (no composit-
ing) and a clear sky threshold (i.e., cases where the
domain is significantly clear). If we remove the clear sky
criteria, the mean temperature gradient increases for all
length scales shown (black curve). The “upper bound”
on the mean temperature gradient is given by the com-
posites in which all data are allowed — regardless of the
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Figure 2: Mean GOES sea surface temperature gra-
dient (°C/km) versus grid spacing (delta x) for May
2004 (see text for more).

latency (green curve). Other curves shown, but not la-
beled, depict various degrees of latency in which we
systematically allow ‘older’ data to enter the composites.
Note that the blue curve, a somewhat “crude” diurnal
SST adjustment that employs a simple ‘time of day cor-
rection’ to the latent SSTs, compares relatively favorably
to the GOES ‘CLEAR’ - suggesting that the latency
issue is indeed relevant.

Is it possible to ‘adjust’ for the diurnal SST effect
using a more physically rigorous approach? Here, we
apply a parameterization developed by Kawai and
Kawamura (KK, 2002) that was designed to use daily
mean wind speed and maximum solar radiation as in-
puts and returns the difference between the maximum
and minimum SST for the day. Rather than use daily
inputs of wind and solar radiation however, we attempt
to downscale the KK parameterization (i.e., apply it to
hourly data). The approach replaces the latent SST in
the composite with a combination of the most recent
value of the diurnally adjusted (i.e., diurnal signal re-
moved) SST (Thase) and an SST increment calculated
using the current (Eta) solar/wind via the KK parame-
terization. Although the KK algorithm was developed for
both skin and bulk SST adjustments — we choose the
latter as the 1m depth would be the most appropriate for
‘adjusting’ the GOES SSTs as the GOES IR radiances
are regressed against buoy temperatures. Additionally,
because we are attempting to apply the KK parameteri-
zation in a manner that it was not necessarily intended,
we test the method using inputs (wind/solar) from Eta
analyses (at 00, 06, 12, and 18 UTC) for May 2004. On
time scales greater than a day, Tpase is intended to be a
quasi-conserved SST value (i.e., slowly changing in
time). We attempt to show that Tyase is also approxi-
mately invariant at time scales < 1 day, and thus can be
used to “update” our composites in regions of latent
data.

Both monthly and daily average estimates of SST
and Tpase for May 2004 over the entire NWS/ADAS do-
main are shown in Figure 3. Albeit reduced, It is clear
from this figure that we have not removed the entire
diurnal signal in the Tpase estimate (red dots). At this
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Figure 3: Daily mean (small black squares) and
monthly mean (large black squares) GOES SSTs
(°C), and KK estimates of the daily mean (small red
circles) and monthly mean Tpase for the NWS ARPS
Florida domain (see text for details).

point is not clear why we are not able to remove more of
the diurnal signal, however there are likely several fac-
tors including sun glint contamination, parameterization
scalability, and the quality of the Eta solar and wind in-
puts. In terms of the former, we have uncovered sun
glint-contaminated (GOES-12) SSTs in the shallow shelf
waters within the ADAS domain (see Haines et al.,
2006) that may, in part, be responsible for producing a
spuriously large diurnal SST signal over portions of the
region. We are currently reprocessing the GOES com-
posites using an additional sun glint mask to remove the
warm SSTs.

ii. Length Scale Determination

There is no reason to expect the analysis length
scales and error covariances to be homogeneous in
space or time. We have begun to determine the analysis
length scales using an approach similar to that of Bor-
mann et al. (2003). The Bormann algorithm calculates
the correlations of distance-binned difference pairs (be-
tween GOES cloud track and upper air winds) using the
correlation formula

DX XN -Y) 5)
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COR(X,Y) =

where (X, Y) and (X,Y) denote the innovation pairs

and their bin mean respectively, and i is the number of
pairs in each distance bin. Innovations are used so as to
avoid recorrelation with distance (note however that this
does not guarantee that the data will not recorrelate).
Because this calculation involves an enormous number
of innovation pairs, we focus on pre-selected ‘represen-
tative’ regions within the NWS ARPS domain (see
crosses on Fig. 4). In order to ensure a statistically ro-
bust estimate of the distance-dependent correlations,
we use an entire month of innovations. Additionally,
because we seek spatially dependent length scale esti-
mates, all correlation estimates are local -- using a



subregion within a radius of 80 km for a chosen grid
point. The 80 km radius was selected: 1.) to allow for a
sufficient number of innovations within the subregion
(over a month), 2.) to avoid spreading unrepresentative
innovations across the Florida peninsula, and 3.) to
maintain a somewhat reasonable number of calcula-
tions.

Figure 5 shows an example plot (for February
2005) of the local spatial correlation values plotted ver-
sus distance (i.e., mid-bin value for 20 km bins). These
values correspond to the region directly off the east-
central Florida coast (red circle in Fig. 4). The spatial
lag-correlation function plotted against separation dis-
tance is substantially less than 1.0 because of the pres-
ence of observation error variance (in addition to back-
ground field error) in the denominator of Eq. (5) which is
not present in the numerator as the lag approaches zero
separation (e.g., Thiébaux et al. 1986). Because the
best fit of the correlations may not be Gaussian (which
is the assumed error correlation structure for our analy-
sis system), we show two different regressions: Gaus-
sian and autoregressive. For this region, the correlations
between the two models are comparable (this is not the
case in all regions of our domain however). For this
case, the best fit returns a length scale of approximately
77 km.

In addition to accounting for spatial variability in the
error covariance length scale, we are also in the proc-
ess of determining the temporal variability (monthly).
The degree of stationarity (or lack thereof) will deter-
mine the eventual operational analysis configuration
with respect to how often we update the analysis pa-
rameters (e.g., monthly versus seasonal). A Barnes
analysis will then spread the length scale information
throughout the grid in order to ensure a smoothly vary-
ing length scale.
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Figure 4: GOES SST (°C) composite valid 07 UTC 8
May, 2004. The ‘X’s indicate regions selected for
estimating the error covariance length scale.

Table 1: Mean SSTs (°C) by buoy location for May
2004.

#41009 | #41010 | #41012 | #42036
buoy/day 24.72 25.29 24.15 24.19
buoy/night 24.40 25.10 23.76 23.84
GOES/night | 24.71 25.05 24.00 24.17
RTG 25.19 24.83 24.21 24.32
climatology | 25.50 24.57 24.56 25.07

iii. Bias and Error Variance Determination

We are currently calculating bias and error vari-
ances (GOES minus MODIS) for the ADAS domain.
Because the truth is not known, we are using the inno-
vations as a surrogate to produce both spatially and
temporally dependent error and bias estimates. Since
we intend to use buoy data as an independent evalua-
tion metric, we can use buoy/GOES differences and
MODIS/GOES bias estimates to tune the analysis sys-
tem. Table 1 lists the mean SSTs at four of the nine
buoy locations (see Fig. 1) within the ADAS domain
during May 2004. Daytime (nighttime) estimates are
averages over a 3 h window between 16-19 UTC (4-7
UTC) that correspond to the MODIS overpass times for
the domain. Also shown are the corresponding GOES
(night), RTG, and 15 yr climatological (obtained from
the Jet Propulsion Laboratory AVHRR Pathfinder 9 km
pentad data archived at the Goddard DAAC) SSTs at
the buoy locations. All but the GOES data, which are
nearest neighbor, are interpolated to the buoy location.
There are no GOES SSTs corresponding to the daytime
window of the MODIS overpass (17-19 UTC) due to sun
glint. Except for buoy #41010, the GOES, RTG and cli-
matological SSTs are each warmer than the buoy for
May 2004 (the RTG analysis assimilates a 24 h average
buoy SST). We are in the process of determining
monthly GOES bias estimates at all 9 buoy locations
within the domain.

In Figure 6 we show a spatial map of the SST error
variance estimate (using both day/night MODIS data) for
May 2004. These preliminary variance estimates are
based on MODIS-GOES differences where the latent
GOES SSTs have been adjusted using the KK parame-
terization. It is important to point out however, that these
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Figure 5: Local spatial lag correlation versus inno-
vation distance separation for February 2005.



Figure 6: SST error variance estimate (°C?) from
MODIS/GOES innovations for May 2004.

variance estimates are impacted by a 4 h lag between
data sets. Questions remain with how to properly ad-
dress issues related to data set latencies in an opera-
tional setting (i.e., the GOES SST data is approximately
4 h older than the MODIS). Nevertheless, the variance
shown is maximum (on the order of 1.3 °C? in the
northwest portion of the ADAS domain and adjacent to
the northeast Florida coast with lower (and relatively
uniform) variability elsewhere. Figure 7 depicts a clear-
sky (i.e., non-composite) variance estimate for the same
period. As in Fig. 6 there is an approximate 4 h differ-
ence between the GOES and MODIS data. The error
variance estimates for the non-composite data are lower
— especially in the south and southwest part of the do-
main (compare Fig. 6 and Fig. 7). Ultimately, we intend
to use zero (time) lag and distinguish between day/night
in our estimates of the error variance and thus anticipate
that the error estimates will be less than those shown in
Figs. 6 and 7. Also, as previously discussed, an evalua-
tion of the month-to-month variability will determine how
often we update the operational error variances within
our analysis domain.

5. SUMMARY

An SST analysis system has been constructed at
FIT as part of a COMET funded project to produce near
real-time SST analyses for the ARPS/ADAS assimilation
and forecast cycle at the Melbourne National Weather
Service Forecast Office. The analysis system is fully
configured except for some outstanding data quality
issues — in particular with respect to the data latency
problem. Systematic estimates of the analysis parame-
ters (which include both the error correlation length
scales and error covariance magnitudes) will be strati-
fied by month and region in an effort to tune the analysis

Figure 7: As in Fig. 6 but for non-composite GOES
data.

system and to determine their temporal evolution within
the NWS ADAS/ARPS domain. The latter will be used to
create a time-varying error specification. A relatively
clear testbed period was chosen (May 2004) to evaluate
the SST analyses which will be compared against both
buoy data and MODIS SST composites (Haines et al.,
2006). In a companion study (LaCasse et al., 2006),
work is currently underway to evaluate the impact of
high-resolution SSTs (derived from the MODIS compos-
ites) on short-term model forecasts.
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