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Uncertainty in Weather Forecasts 

It is being increasingly recognized that the 
uncertainty in weather forecasts should be 
quantified and furnished to users along with the 
single value forecasts usually provided.  

MDL’s goal is to provide probabilistic 
guidance for all surface weather 
variables in gridded form in the 
National Digital Guidance Database 
(NDGD).  



Outputs 

How do we provide probabilistic forecasts to our 
customers and partners? 

• Fit a parametric distribution (e. g., Normal). 
– Economical, but restrictive 

• Enumerate Probability Density Function (PDF) or 
Cumulative Distribution Function (CDF) by computing 
probabilities for chosen values of the weather element. 
– Values must “work” everywhere 

• Enumerate Quantile Function (QF) by  
giving values of the weather element for  
chosen exceedence probabilities. 



Sample Forecast as Quantile Function
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Sample Forecast as Quantile Function
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Chance of temperature below 

40.0 degrees F is 67.9%. 



Sample Forecast as Probability Density Function
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Tools and Concepts 

We have combined the following tools in a 

variety of ways to take advantage of linear 

regression and ensemble modeling of the 

atmosphere. 

– Error estimation in linear regression 

– Kernel Density Fitting (Estimation; KDE) 

 

A brief overview of these tools follows. 



Error Estimation in Linear Regression 

• The linear regression theory used to 
produce MOS guidance forecasts includes 
error estimation. 

• The Confidence Interval quantifies 
uncertainty in the position of the regression 
line.  

• The Prediction Interval quantifies 
uncertainty in predictions made using the 
regression line. 

 

The prediction interval can be used to 
estimate uncertainty each time a MOS 
equation is used to make a forecast. 



Estimated Variance of a Single New 

Independent Value 

• Estimated variance 

 

 

 

• Where 
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Computing the Prediction Interval 

The prediction bounds for a new prediction is 

 

 

where 

t(1-α/2;n-2) is the t distribution n-2 degrees of freedom at the 1-α 

(two-tailed) level of significance, and 

s(Ŷh(new)) can be approximated by 

 

 

where 

s2 is variance of the predictand 

r2 is the reduction of variance 
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Multiple Regression (3-predictor case) 
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Multiple Regression, Continued 

Error bounds can be put around the new value of Y with 

 

where 

– s2 is the variance of the predictands,  

– R2 is the reduction of variance, 

– X’ is the matrix transpose of X, and 

– ()-1 indicates the matrix inverse. 
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Example:  Confidence Intervals for Milwaukee, Wisconsin 

CI; Day 1 CI; Day 3 CI; Day 7 



Example:  Prediction Intervals for Milwaukee, Wisconsin 

PI; Day 1 PI; Day 3 PI; Day 7 



Advantages of MOS Techniques 

for Assessing Uncertainty 

• Single valued forecasts and probability 

distributions come from a single consistent 

source. 

• Longer development sample can better 

model climatological variability. 

• Least squares technique is effective at 

producing reliable distributions. 



Kernel Density Fitting 

• Used to estimate the Probability Density 
Function (PDF) of a random variable, given a 
sample of its population. 

• A kernel function is centered at each data point. 

• The kernels are then summed to generate a 
PDF. 

• Various kernel functions  
can be used.  Smooth,  
unimodal functions with  
a peak at zero are most  
common. 



Kernel Density Fitting 

A common problem is choosing the shape and width of the 
kernel functions.  We’ve used the Normal Distribution 
and Prediction Interval, respectively. 



Spread Adjustment 

Combination of prediction interval and spread in the 
ensembles can yield too much spread. 

Spread Adjustment attempts to correct over dispersion.   



Weather Elements 

• Temperature and dew point, 

developed simultaneously 

– 3-h time projections for 7 days 

– Model data at 6-h time projections 

– 1650 stations, generally the same 

as GFS MOS 

• Maximum and minimum 

temperature 

– 15 days 

– Same stations 

http://upload.wikimedia.org/wikipedia/commons/f/fd/Galileo_Thermometer_closeup.jpg
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Methods 

We explored a number of methods.  Three are 
presented here. 

Label Equation 

Development 

Equation 

Evaluation 

Post 

Processing 

Ctl-Ctl-N Control member 

only 

Control member 

only 

Use a Normal 

Distribution 

Mn-Mn-N Mean of all 

ensemble 

members 

Mean of all 

ensemble members 

Use a Normal 

Distribution 

Mn-Ens-KDE Mean of all 

ensemble 

members 

Each member 

individually 

Apply KDE, 

and adjust 

spread 
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Results 

• Will present results for cool season temperature 
forecasts developed with two seasons of development 
data and verified against one season of independent 
data. 

• Results center on reliability and accuracy. 

• The 0000 UTC cycle of the Global Ensemble Forecast 
System is the base model. 

• Results for dew point are available  
and very similar to temperature. 

• Results for maximum/minimum  
temperature are in process, and they are  
similar so far. 



Probability Integral Transform (PIT) 

Histogram 

• Graphically assesses reliability for a set of probabilistic 
forecasts.  Visually similar to Ranked Histogram. 

• Method 
– For each forecast- 

observation pair,  
probability associated  
with observed event  
is computed.   

– Frequency of  
occurrence for each  
probability is recorded  
in histogram as a ratio.   

– Histogram boundaries  
set to QF probability  
values. 

T=34F;  

p=.663 

Ratio of 1.795 indicates ~9% of the 

observations fell into this category, 

rather than the desired 5%. 

Ratio of .809 indicates ~8% of the 

observations fell into this category, 

rather than the desired 10%. 



Probability Integral Transform (PIT) 

Histogram, Continued 

• Assessment 
– Flat histogram at unity 

indicates reliable,  
unbiased forecasts. 

– U-shaped histogram 
indicates under- 
dispersion in the  
forecasts. 

– O-shaped histogram 
indicates over- 
dispersion. 

– Higher values in higher 
percentages indicate  
a bias toward lower 
forecast values. 



Squared Bias in Relative Frequency 

• Weighted average of 

squared differences 

between actual 

height and unity for 

all histogram bars. 

• Zero is ideal. 

• Summarizes 

histogram with one 

value. 

Sq Bias in RF = 0.057 



Squared Bias in Relative Frequency 

• Diurnal cycle evident in early projections. 

• Use of ensemble mean as a predictor improves reliability 
at most time projections. 

• KDE technique seems to degrade reliability. 

• Model resolution change evident in latest projections. 

 



Bias Comparison 



Cumulative Reliability Diagram (CRD) 

• Graphically assesses reliability for a set of probabilistic 

forecasts.  Visually similar to reliability diagrams for event-

based probability forecasts. 

•  Method 

– For each forecast- 

observation pair,  

probability associated  

with observed event  

is computed.  

– Cumulative distribution  

of verifying probabilities  

is plotted against the  

cumulative distribution  

of forecasts. 

63.5% of the observations occurred 

when forecast probability was 70% 

for that temperature or colder. 



Day 1 Reliability 



Day 3 Reliability 



Day 7 Reliability 



Continuous Ranked Probability Score 

The formula for CRPS is 

 

 

where P(x) and Pa(x) are both CDFs 
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Continuous Ranked Probability Score 

• Proper score that  

measures the  

accuracy of a set  

of probabilistic  

forecasts. 

• Squared differ- 

ence between  

the forecast CDF 

and a perfect  

single value  

forecast, inte- 

grated over all  

possible values  

of the variable.   

Units are those of the variable. 

• Zero indicates perfect accuracy.  No upper bound. 
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Continuous Rank Probability Score 

• All techniques show considerable accuracy. 

• After Day 5 the 2 techniques that use ensembles show 

~0.5 deg F improvement (~12 h). 



Accuracy Comparison 



Dependent data; No 

spread adjustment 

Dependent data; With 

spread adjustment 

Independent data; With 

spread adjustment 
Independent data; No 

spread adjustment 

Effects of Spread Adjustment 



Grids 

• Temperature forecasts for 1650 stations 

can be used to generate grids. 

– Technique is identical to that used currently 

for gridded MOS. 

• Each grid is associated with an 

exceedence probability. 

 



Gridded [.05, .95] Temperatures 

50% 



Case Study 

• 120-h Temperature 
forecast based on 0000 
UTC 11/26/2006, valid 
0000 UTC 12/1/2006. 

• Daily Weather Map at 
right is valid 12 h before 
verification time. 

• Cold front, inverted trough 
suggests a tricky forecast, 
especially for Day 5. 

• Ensembles showed 
considerable divergence. 



Skew in Forecast Distributions 
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A “Rogue’s Gallery” of Forecast PDFs 
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Conclusions 

• These techniques can capture the uncertainty in 
temperature forecasts and routinely forecast probability 
distributions. 

• Linear regression alone can be used to generate 
probability distributions from a single model run. 

• Means of ensemble output variables are useful 
predictors. 

• The Mn-Ens-KDE technique shows considerable 
promise, and it would be relatively easy to implement 
within the current MOS framework. 

• Enumerating the points of the quantile function is an 
effective way to disseminate probability distributions. 



Future Work 

• Improve spread adjustment technique. 

• Examine characteristics of forecast distributions 
and their variation. 

• Verify individual stations. 

• Extend temperature, dew point, maximum/ 
minimum temperature development to four 
forecast cycles and two seasons. 

• Consider forecast sharpness and convergence 
as well as reliability and accuracy. 

• Create forecast distributions of QPF and wind 
speed. 

• Explore dissemination avenues. 


