

A High-Resolution Atmospheric, Wave and Circulation Forecast System for the Great Lakes Region

André van der Westhuysen¹, Eric Anderson², Greg Mann³, Jian Kuang¹, John Kelley⁴, Ed Myers⁵, Ayumi Manome², Dave Schwab⁶

¹IMSG at OAA/NWS/NCEP, College Park, MD
²NOAA/OAR/GLERL, Ann Arbor, MI
³WFO Detroit, MI
⁴NOAA/NOS/CO-OPS, Silver Spring, MD
⁵NOAA/NOS/OCS/CSDL, Silver Spring, MD
⁶Univeristy of Michigan, Ann Arbor, MI

23rd U.S./Canada Great Lakes Operational Meteorology Workshop, Grand Rapids, MI, August 25-27, 2015

Content

- 1. Motivation and study aim
- 2. Model selection and computational meshes
- 3. Model Configurations
 - a) Atmospheric
 - b) Hydrodynamic
 - c) Waves
- 4. Hindcast validation for uncoupled models
- 5. Conclusions

Motivation Lake Erie hindcast: Oct 23-Nov 3 2013

DATMOSPHE

NOAA

PARTMENT OF CON

NATION

6

NOAA/NOS/CO-OPS Observed Water Levels at 9063020, Buffalo NY From 2013/10/23 00:00 LST to 2013/11/03 23:59 LST

Study aim

Develop an **operational coupled wave and 3D circulation model**, run on a common unstructured grid, and forced by a **high-resolution atmospheric model** and **ice model**. Focus on coastal hazards in shallow regions.

Model selection

- 1. FVCOM hydrodynamic model (unstructured, 3D)
- 2. WAVEWATCH III wave model (unstructured)
- Coupled via NOAA's NEMS coupler (ESMF-based).
- Forced by high-resolution operational atmospheric input from NCEP. During development phase, a high-res downscaled **WRF model** is employed.
- Ice coverage input from National Ice Center.

Computational meshes

DATMOSP

NOAA

6

0/17

Atmospheric Model Configuration

• Weather Research Forecast (WRF) model

NOAA

MENT OF C

- Varying resolution to test spectra of forecast inputs
 - 12 km comparable to current NAM
 - 4 km comparable to NAM nest and HRRR (High-Resolution Rapid Refresh)
 - 1 km next generation mesoscale models

 Initial and Boundary conditions primarily from North American Regional Reanalysis (NARR)

 Analysis nudging applied to the upper ²/₃ of model atmosphere to control synoptic-scale evolution

Atmospheric Model Configuration

• Research-grade simulations

NOAA

TMENT OF C

- 12 km & 4 km domains stand alone. 1 km domain nested
- High-amplitude episodes simulated / including run-up time to allow spin-up time for hydrodynamic models
- *Physics options optimized for each episode*
 - Output validation conducted at marine observation sites.
 - Greatest gains from 12 km down to 4 km. Nearshore processes are improved further in 1 km solutions
 - Resolving the wind field structure and character more completely presents a new challenge to companion hydrodynamic applications

Atmospheric Model Post Tropical Storm Sandy (Oct 2012)

NOAA

knot 60

50

40

30

20

10

WRF 12 km

NOAA

TMENT OF

WRF 4 km

WRF 1 km

WRF model validation (S. Sandy)

Wspd (kt)

ATMOSP

noaa

PARTMENT OF CO

2012/10/25 0 Z Cycle at 45008 ----- CSP Lag 0 hr - WRF12km_ndg1 - WRF4km_ndg1 - WRF1500m_2 Evaluation - Wind

Date (DD.hh)

2012/10/25 0 Z Cycle at 45005 ----- CSP Lag 0 hr - WRF12km_ndg1 - WRF4km_ndg1 - WRF1500m_2 Evaluation -Wind

11/17

Hydrodynamic Model Configuration

• Unstructured grid Finite-Volume Community Ocean Model (FVCOM)

• Primitive equations

MENT OF

- Simulate 3D circulation, water level, temperature
- Driven by meteorological forcing and lateral boundary conditions at major rivers:
 - WRF outputs at 12, 4, and 1 km resolution
 - Interpolated meteorology (GLERL NNM)
 - Based on the coastal observations and several buoy data. Currently used in operational hindcasts.

ATMOSE NOAA RTMENT OF C

FVCOM water levels (S. Sandy)

High-resolution WRF vs Interpolated Meteorology currently used in operational forecasts. WRF wins at 11 out of 13 gauge stations (\bigcirc).

31

30

29

25

RMSE [cm]				
	WRF			Interpolated Meteorology (conventional)
Name	12km	4km	1.5 km	
Lake Port	4.56	5.57	5.56	6.01
Harbor Beach	4.37	4.6	4.72	6.75
Essexville	15.5	16.9	19.31	11.41
Alpena	3.46	3.66	3.64	4.04
Mackinaw City	3.05	3.17	3.55	4.03
Ludington	2.56	2.72	2.81	4.01
Holland	3.22	3.21	3.69	2.74
Calumet				
Harbor	5.17	4.57	4.98	4.64
Milwaukee	3.51	3.27	3.62	3.65
Sturgeon Bay Canal	3.37	3.54	3.7	4.87
Menominee	6.5	6.73	7.54	6.8

31

29

13/17

Wave Model Configuration

WAVEWATCH III version 4.18

noaa

MENT OF C

- Third-generation, spectral wave model run operationally at NOAA/NCEP. Processes included:
 - Spatial propagation
 - Intra-spectral propagation (refraction and Doppler shifting)
 - Source terms (ST4 with Fillipot and Ardhuin 2012):
 - Deep water: Wind input, Quadruplet nonlinear interaction, Whitecapping dissipation.
 - Shallow water: Bed friction, Depth-induced breaking.
- Explicit numerical approach.
- Forced with WRF output at 12, 4, 1 km resolution.

Erie WW3 12km WRF 20131024 00:00:00

Conclusions

- 1. Developing an operational coupled 3D circulation and wave model over the GL, run on shared unstructured grids, and forced by a high-resolution atmospheric model and ice fields.
- 2. High-resolution WRF model configured. Greatest accuracy increase found from 12 to 4 km res. Enhanced nearshore detail with 1 km.
- 3. FVCOM model shows good water level performance with high-res WRF model input, improving on GLERL NNM fields.
- 4. WAVEWATCH III shows encouraging performance. Differences visible in wave field detail and phasing from various WRF resolutions.
- 5. Next steps: Further refinement of model meshes and seasonal model runs.