

JMA Status Report

Masahiro Kazumori

Senior Coordinator for Data Assimilation Systems Numerical Prediction Division, Forecast Department Japan Meteorological Agency

気象庁 Japan Meteorological Agency

Three topics

Current status and recent progress of JMA's NWP

 Updates on Himawari-8/9 (prepared by satellite program division)

 Status report of RTH Tokyo (prepared by RTH focal point for Tokyo)

Current status and recent progress of JMA's NWP

Masahiro Kazumori

Senior Coordinator for Data Assimilation Systems Numerical Prediction Division, Forecast Department Japan Meteorological Agency

Current NWP models in JMA

	In Operation				On trial	
	Global Spectral Model <mark>GSM</mark>	Meso-Scale Model <mark>MSM</mark>	Local Forecast Model LFM	Global Ensemble GEPS	Seasonal Ensemble CPS2	Meso-scale Ensemble <mark>MEPS</mark>
objectives	Short- and Medium-range forecast	Disaster reduction Aviation forecast	Aviation forecast Disaster reduction	One-week forecast Typhoon forecast Early warning on extreme weather One-month forecast	Seasonal forecast (three month forecast, cold/warm season outlook) El Nino outlook	
Forecast domain	Global	Japan and its surroundings (4080km x 3300km)	Japan and its surroundings (3160km x 2600km)	Global	Coupled Global Atmosphere and Ocean	Japan and its surroundings (4080km x 3300km)
Horizontal resolution	TL959 (0.1875 deg)	5km	2km	TL479 / TL319 (0.375 / 0.5625 deg)	Atmos.: 1.125 deg Ocean:0.3-0.5x1 deg	5km
Vertical levels / Top	100 0.01 hPa	76 21.8km	58 20.2km	100 0.01 hPa	Atmos.: 60 (~0.1 hPa) Ocean: 52 with BBL* *Bottom Boundary Layer	76 21.8km
Forecast Hours (Initial time)	132 hours (00, 06, 18 UTC) 264 hours (12 UTC)	39 hours (00, 03, 06, 09, 12, 15, 18, 21 UTC)	9 hours (00-23 UTC hourly)	264 h (00, 12 UTC) 132 h (06, 18 UTC)* 27 members Extend to 432 h (4times/week) 816 h (4times/week) 13 members	210 days (00UTC) 51 members / month	39hours (00,06,12,18 UTC) 21 members
Initial Condition	Global Analysis (4D-Var)	Meso-scale Analysis (4D-Var)	Local Analysis (3D-Var)	Global Analysis with ensemble perturbations (SV, LETKF)	JRA-55 with ensemble perturbations (BGM)	Meso-scale Analysis with ensemble perturbations (SV)

* when a TC of TS intensity or higher is present or expected in the RSMC Tokyo - Typhoon Center's area of responsibility (0°-60°N, 100°E-180°).

Operationally Assimilated Satellite Data

Туре	Satellite/Instrument	Global Analysis	Meso Analysis	Local Analysis
	NOAA15,18,19,Metop-A,-B,Aqua/AMSU-A	Radiance	Radiance	Radiance
	NOAA18,19,Metop-A,-B/MHS	Radiance	Radiance	Radiance
1. MW Sounder	DMSP-F17,18/SSMIS	Radiance	-	-
	Suomi-NPP/ATMS	Radiance	-	-
	Megha-Tropiques/SAPHIR	Radiance	-	-
	Aqua/AIRS	Radiance	-	-
2. IR Sounder	Metop-A,B/IASI	Radiance	-	-
	Suomi-NPP/CrIS	Radiance	-	-
3. MW Imager	DMSP-F17,18/SSMIS	Radiance	Radiance, Rain Rate	Radiance
	GCOM-W/AMSR2	Radiance	Radiance, Rain Rate	Radiance
	GPM-core/GMI	Radiance	Radiance, Rain Rate	Radiance
	Himawari-8	CSR, AMV	CSR, AMV	CSR, AMV
-	GOES-15	CSR, AMV	-	-
	Meteosat-8,11	CSR, AMV	-	-
4. VIS/IR IIIager	NOAA15,18,19,Metop-A,-B/AVHRR	AMV	-	-
	Aqua,Terra/MODIS	AMV	-	-
	LEOGEO composite image	AMV	-	-
5. Scatterometer	Metop-A,-B/ASCAT	OSWV	OSWV	-
6. Radio Occultation GRAC Me Ter Ta	GRACE-A,-B/Blackjack	Bending Angle	Refractivity	-
	Metop-A,-B/GRAS	Bending Angle	Refractivity	-
	TerraSAR-X/IGOR	Bending Angle	Refractivity	-
	TanDEM-X/IGOR	-	Refractivity	-
	COSMIC/IGOR	Bending Angle	Refractivity	-
7. Radar	7. Radar GPM/DPR		Relative Humidity	-
8 Soil Moioturo	GCOM-W/AMSR2	-	-	Soil Moisture
o. Soli moisture	Metop-A,-B/ASCAT	-	-	Soil Moisture

CSR: Clear Sky Radiance on water vapor channels, AMV: Atmospheric Motion Vector, OSWV: Ocean Surface Wind Vectors

Assimilated Data Amount History - Global Analysis -

Recent Progress for 2017-2018

GA: Global Analysis MA: Meso-scale Analysis LA: Local Analysis

(1) Jun. 2018: Upgrades of JMA supercomputer, Cray XC50

Updates of Observation data usage since 1st GODEX-NWP meeting

- (1) May 2017: Enhancement of <u>QC for GNSS-RO data</u> in GA
- (2) Mar. 2018: Switch-over from Meteosat-10 to <u>Meteosat-11</u> <u>AMV and CSR</u>
- (3) Jun. 2018: Use of DBNet Suomi-NPP/ATMS in GA
- (4) Oct. 2018: Enhancement of surface sensitive CSR data use in GA

JMA 10th generation supercomputer system

JMA began the operation of its new supercomputer system on 5 June 2018.

Effective computer capacity (in terms of meteorological calculation) was

enhanced about 10 times.

25th and 26th rank at the Top 500 in June 2018

Comparison of Specifications

	Previous	New			
Model	HITACHI SR16000/M1 (Vendor: Hitachi)	Cray XC50 (Vendor: Hitachi)			
Theoretical Peak Performance	847 TFlops (*)	18,166 TFlops			
Capacity of Main Memory	108 TBytes	528 TBytes			
Capacity of Magnetic Disk	348 TBytes	10,608 TBytes			

20km L100 132hr forecast 13km L128

Enhancement of QC for GNSS-RO data in GA

- Changing bending angle's threshold value of the gross error check in the tropics
 Increased data use
- Changing the handling of quality flag
- Setting the lower limit of altitude (2km) for assimilating bending angle
- ROPP6 to ROPP8

Control run: previous operation equivalent, Test run: current operation Red: 10 Jun. to 11 Oct. 2015, Green: 10 Nov. 2015-11 Mar. 2016

CSR and AMV: Switch-over from Meteosat-10 to Meteosat-11

CSR data monitoring between Meteosat-10 and -11

Data counts of assimilated WV AMVs in the southern hemisphere

After QC, quality of Meteosat-11 CSR data are comparable to Meteosat-10 CSR data.

Increase of available AMV data from Meteosat-11.

Switch-over from Meteosat-10 to Meteosat-11 was 6th March 2018 at JMA

Impact on FG departure of other observations

気象庁 Japan Meteorological Agency

Status/Plan for NOAA/Metop/JPSS Sounder data

Satellite	Sensor	JMA/MSC	DBNet AP	DBNet EU	DBNet SA	DBNet DBRTN	Global data
NOAA	AMSU-A,MHS	Ø	Ø	Ø	Ø	/	Ø
Metop	AMSU-A,MHS	Ø	0	Ø	Ø	/	Ø
Suomi-NPP	atms 1	→©	Δ	0	_	0	Ø
NOAA-20	ATMS	-	_	_	_	0	O
Suomi-NPP	CrIS (NSR)	Ø	Δ	0	—	0	O
NOAA-20	CrIS (NSR)	/	/	/	/	/	
Suomi-NPP	CrIS (FSR)	—	—	—	—	—	3 ©
NOAA-20	CrIS (FSR)	—	—	—	_	0	OK
Metop	IASI (500ch)	0	Δ	_	_	0	Ousing 616ch

CrIS(NSR): Normal Spectral Mode (399ch) CrIS(FSR): Full Spectral Mode (431ch)

- 1. JMA has started to use direct readout Suomi-NPP/ATMS and CrIS at JMA/MSC.
- 2. and will start to use data from DBNet soon.
- 3. JMA has started to use CrIS(FSR) dataset instead of CrIS(NSR) dataset.
- 4. JMA has started to monitor passively NOAA-20/ATMS and CrIS.

Enhancement of surface sensitive CSR data use in GA

- 1. Himawari Band 9, 10 and MSG Ch 6 CSR data are affected by land surface
 - Use of land surface emissivity atlas and retrieved Land Surface
 Temperature (LST_{ret}) from window channel observation
 - CSR data at higher altitude (> 4,000 m) are rejected
- 2. Use of hourly CSR data from GOES and MSG

Use of LST_{ret} in RTM calculation for CSR data

Base: Operational JMA NWP system with <u>surface-sensitive CSR over ocean</u> Test 1: Base + <u>surface-sensitive CSR over land</u> using LST_{FG}.

Test 2: As Test 1 but LST_{ret} was used over land.

Improved O-B histogram (w/o BC) by using retrieved LST in RTM

Improved FG fits to RAOB by using surfacesensitive CSR with LST_{ret}

Impacts on NWP forecasts

Normalized Change in FG STD of MHS Ch. 4 Dec. 2016 – Feb. 2017

Addition of surface sensitive CSR data (Himawari-8 B9, B10, MSG CH.6) improved FG fits of MHS ch.4 over land Relative improvement of 24-hr specific humidity forecast

Improvement of 24-h forecast of specific humidity in Tropics

Planned updates of observation use in JMA's NWP system for 2018-2019

GA: Global Analysis MA: Meso-scale Analysis LA: Local Analysis

- (1) Enhancement of AMV QC in GA
- (2) Use of GOES-16 AMV and CSR in GA
- (3) Activation of NOAA-20 ATMS and CrIS in GA
- (4) Use of ScatSat/OSCAT ocean surface wind in GA
- (5) Use of TanDEM-X bending angle data in GA
- (6) Use of Himawari-8 Band-9, -10 in MA
- (7) Use of 12.5km ASCAT wind data in MA
- (8) Use of high density Himawari-8 AMV in MA
- (9) Activation of NOAA-20 ATMS in MA
- (10) All-sky MW radiance assimilation in GA

Updates on Himawari-8/9

Japan Meteorological Agency

History of Himawari Satellites

Himawari-8/9 Schedule

- Himawari-8: Operational since July 7, 2015
- Himawari-9: Standby for backup since March 10, 2017
- Switch over from H-8 to H-9 planned in 2022

Himawari-8/9 Operational Status

- Himawari-8: operational at around 140.65 degE
 - AHI (16-band Imager) and DCS (Data Collection System) operational
 - AHI maintenance scheduled once a year
 - H-9/AHI becomes operational during the maintenance
 - This year (2018), conducted on February 13-14
- Himawari-9: standby at around 140.75 degE
 - H-9 will becomes operational in case of H-8 anomaly
 - AHI "Health Check" conducted several times a year to confirm AHI functionality (this operation requires LHP(LOOP Heat Pipe) startup)
 - 2017: May 29 June 12, Aug 29 Sep 13, Nov 28 Dec 12
 - 2018: Jan 31 Feb 16, Oct 2 Oct 19

Himawari-9/AHI

Himawari-8/AHI

Band 13, Feb 02, 2017

H-8 and H-9 are functionally identical

Himawari-8/9 AMV

Atmospheric Motion Vector

- Himawari-8/9 AMV (VIS, IR, WV1,2,3) is derived hourly using Full-Disk imagery and is distributed in BUFR format via GTS.
- Himawari-8 AMV has been disseminated operationally since July 2015.
- Himawari-9 AMV has also been ready for the backup of Himawari-8 AMV.

RAOB statistics of IR(10.4um) upper-level wind speed using the Himawari-9 health check operation data for about two weeks (2 – 14 Feb 2018)

Sonde Statistics collocation condition QI(w/ fcst) > 0.85 within 150 km FM station AMV Height within 50hPa (< 700hPa) AMV Height within 35hPa (>700hPa)

Himawari-8/9 CSR

Clear Sky Radiance

Area averaged clear sky brightness temperature

- $\checkmark~$ All IR bands (3.9, 6.2, 6.9, 7.3, 8.6, 9.6, 10.4, 11.2, 12.4, 13.3 $\mu m)$
- ✓ Full disk, <u>hourly produced</u> and distributed via GTS mainly for NWP community
- ✓ Spatial resolution (averaging size): 16 x 16 pixel (IR) (i.e. <u>32 x 32 km</u> @SSP)
- ✓ Band dependent clear pixel ratios for clear pixel detection
- ✓ Provided to NWP centers via GTS

HimawariCast/Cloud Services

NMHS users of Himawari

HimawariRequest Service

- In January 2018, JMA launched a new international service "HimawariRequest", in collaboration with Australia's Bureau of Meteorology (BoM).
- The service allows NMHS users in WMO RA II and RA V to request Himawari-8/9 Target Area observation covering a 1000 km x 1000 km area every 2.5 minutes.

Users are able to request Target Area observation conducted every 2.5 min!

Current Status

12 Registrations

the Solomon Islands, Myanmar, Australia, Hong Kong, Bangladesh, New Zealand, Malaysia, Samoa, Nepal, Thailand, Fiji and Russia

9 Users (preparations for request submission completed)

the Solomon Islands, Hong Kong, New Zealand, Nepal, Australia, Malaysia, Fiji, Thailand and Russia

During Oct 16 – 17, 2018, Himawri-8 conducted the first observation under the HimawariRequst service in response to BoM's request.

Request-based Observation for BoM

True Color Reproduction imagery during Himawari-8 Target Area observation requested by Australia's Bureau of Meteorology (BoM)

This request was intended to monitor severe weather conditions associated with convective cloud activity around Darwin, in northern Australia.

Status Report of RTH Tokyo

RTH focal point for Tokyo

Presented by (Numerical Prediction Division of JMA)

Second Meeting on Global Operational Data Exchange for NWP (GODEX-NWP-2)

(New Delhi, India, 27 to 30 November 2018)

GISC Tokyo/Japan Meteorological Agency

GTS Connections (Sep. 2018)

Daily Volume

- MPLS (WIS Core Network)
 - Washington
 - Melbourne
 - Exeter
 - Beijing
 - Seoul
 - New Delhi
 - Toulouse
 - Offenbach

Daily Volume

- MPLS (managed by JMA)
 - Hong Kong
 - Bangkok
 - Manila

Daily Volume

GISC Tokyo/Japan Meteorological Agency

Satellite Data Exchange GODEX-NWP1 to GODEX-NWP2

Megha-Tropiques

ROSA (Radio Occultation Sensor for Vertical Profiling of Temperature and Humidity) data from India

– May 2017

To Exeter, Melbourne, Offenbach, Toulouse, Beijing, Seoul, Hong Kong, Manila, Doha

• FY3-C

GNOS GPS-RO data from China

August 2017

To Exeter, Melbourne, Beijing, New Delhi, Seoul,

Hong Kong, Manila

MWHS2, IRAS data from China

– June 2018

To Exeter, Melbourne

Satellite Data Exchange GODEX-NWP1 to GODEX-NWP2

Suomi-NPP

ATMS, CrIS data from Washington

– January 2018

To Seoul

ATMS, CrIS data from Seoul (received at Jincheon Station)

- August 2018

To Exeter, Melbourne, Offenbach, Toulouse, Beijing, New Delhi, Hong Kong, Doha

• COMS

CSR data from Seoul

- April 2018

To Exeter, Melbourne, Offenbach, Toulouse, Beijing, New Delhi, Hong Kong, Doha

AP-RARS connectivity

GISC Tokyo/Japan Meteorological Agency

Thank you for your attention.

