New Climate-Based DSTs for Row Crop and Specialty Crop Producers

Danny Brouillette (presenter),

Climatologist, Computer Programmer/Developer

Midwestern Regional Climate Center (MRCC), Purdue University

27 March 2024

CPASW 2024 – Florida State University – Tallahassee, Florida

Other Co-Authors: Beth Hall (MRCC), Jonathan Weaver (MRCC), Melissa Widhalm (MRCC), Dennis Todey (USDA Midwest Climate Hub), Laurie Notwatzke (USDA Midwest Climate Hub)

Climate Hubs U.S. DEPARTMENT OF AGRICULTURE

Data Matters. We have tools to help you make decisions.

- Monitor regional climate conditions & impacts
- Provide climate data, derived information, and summaries
- Offer customized data services
- Research & outreach on regionally-relevant climate issues

Partnering with the National Centers for Environmental Information and Purdue University.

Soil Temperature Climatology: Demand for this information has grown in recent years.

- Soil temperature information benefits a range of on-farm decisions associated with field work, plant growth, and pest and disease management.
- However, there is a lack of user-friendly interfaces for this information that has a perspective about climate patterns and risks.

Soil Temperature Climatology: It is based on data from the North America Regional Reanalysis.

Network Name

Hennepin West

Station Map

- Daily-resolution 4" soil temperature values from the NARR were obtained for the 1991 to 2020 period for much of the north-central U.S.
- These values were then bias-corrected on a day-by-day basis.
- We may expand this climatology to other regions in the future, but that will require further region-by-region analysis.

Soil Temperature Climatology: Users can view "warms above" dates.

Soil Temperature Climatology

Average Date			
03-10 or Earlier	04-01 to 04-10	05-01 to 05-10	06-01 to 06-10
03-11 to 03-20	04-11 to 04-20	05-11 to 05-20	06-11 to 06-20
03-21 to 03-31	04-21 to 04-30	05-21 to 05-31	06-21 or Later

Date When Soil Temperature Warms Above 50 °F

Soil Temperature Climatology: Users can view these dates at various temperature thresholds.

Soil Temperature Climatology

Average Date			
03-10 or Earlier	04-01 to 04-10	05-01 to 05-10	06-01 to 06-10
03-11 to 03-20	04-11 to 04-20	05-11 to 05-20	06-11 to 06-20
📕 03-21 to 03-31	📕 04-21 to 04-30	05-21 to 05-31	06-21 or Later

Date When Soil Temperature Warms Above 60 °F

Soil Temperature Climatology: Users also can view "cools below" dates.

Soil Temperature Climatology

A١	erage Date			
	09-10 or Earlier	10-01 to 10-10	11-01 to 11-10	12-01 to 12-10
	09-11 to 09-20	10-11 to 10-20	11-11 to 11-20	12-11 to 12-20
	09-21 to 09-30	📕 10-21 to 10-31	📕 11-21 to 11-30	12-21 or Later

Date When Soil Temperature Cools Below 60 °F

Custom Chilling Hours Tool: There has been a desire from for a customizable chilling hours monitoring tool with climatological perspective.

- Almond, 500-60
- Apple, 400-1000 (low-chill varieties are less)
- Apricot, 500-600
- Blackberry, 200-500
- Blueberry, Northern, 800
- Cherry, 700-800
- Chestnut, 400-500
- Citrus, 0
- Currant, 800-1000
- Fig, 100-200
- Filbert, 800
- Gooseberry, 800-1000
- Grape, 100+
- Kiwi, 600-800
- Mulberry, 400
- Peach, 600-800
- Pear, European, 600-800
- Pear, Japanese, 400-500
- Persimmon, 200-400
- Plum Cot,400
- Plum, European, 800-900
- Plum, Japanese, 300-500
- Pomegranate, 100-200
- Quince, 300-500
- Raspberries, 700-800
- Strawberry, 200-300
- Walnut, 600-700

- Accumulated chilling hours offer a way to track the length of exposure to optimum dormancy temperatures that are required for many fruit-producing plants to produce a successful and quality crop the following growing season.
- Since each type of fruit plant requires a specific range of accumulated chilling hours, we developed a fully customizable tool that offers a unique opportunity for enhanced specialty crop monitoring and management.

USDA Climate Hubs U.S. DEPARTMENT OF AGRICULTURE

Custom Chilling Hours Tool: Hourly temperature data come from ASOS/AWOS stations and are filtered.

- Hourly temperature values from ASOS and AWOS stations across the U.S. as far back as 1944 are obtained through a custom-designed data feed from the API of the ACIS hourly data-set. The database is updated daily to provide a real-time monitoring product.
- Three filtering criteria are used to ensure that stations with too many missing values are excluded, helping ensure high-quality information.
- Digitized hourly data were sparse prior to the early 1980's.

Custom Chilling Hours Tool: Map view shows accumulations for user-specified temperature thresholds and date ranges.

Custom Chilling Hours Tool: Plot view gives a seasonal and climatological perspective of accumulations at a user-specified station. (COMING SOON)

Running Chilling Hour Accumulation over All Seasons in Period of Record BALTIMORE-WASHINGTON INTERNATIONAL AIRPORT, MD "Season" year listed at end of plot lines refers to selected End Date. Select lower-bound and upper-bound temperatures and start and end dates. Please allow a few moments after each selection.

Looking ahead...

- For the Soil Temperature Climatology, we plan to investigate adding the capability to see soil temperature information given a user-specified date, real-time station data, and more based on user feedback. Expansion to other regions is also possible.
- For the Custom Chilling Hours Tool, we hope to add features that provide more inter-seasonal and intra-seasonal climatological perspective, investigate interpolating hourly data in the more distant past, and (again) add more based on user feedback.
- Feel free to contact me at <u>dbrouill@purdue.edu</u> or any other personnel at the MRCC or USDA Midwest Climate Hub with questions and feedback.

See the tools online here!

Description: De

Soil Temperature Climatology Custom Chilling 12 Hours Tool