Evolving Urban Air Quality

Brian C. McDonald, Ph.D.

48th Annual Climate Diagnostics and Prediction Workshop, 21st Annual Climate Prediction Applications Science Workshop (March 26, 2024)

Air Pollution Results in Significant Damages to US Public

Poor air quality results in ~100,000 premature deaths and nearly \$1T in damages in the U.S. annually, many times greater than damages from extreme weather events.

Weather fatalities for 2018 (source: http://www.weather.gov/hazstat) Air Quality mortality for 2005 (source: Fann et al., Rask Analysis, 2012. DOI: 10.1111/j.1539-6924.2011.01630.x)

Evolution in Sources of Anthropogenic Volatile Organic Compounds

Gasoline VOCs Decreasing Rapidly

Los Angeles 2010 Gasoline Consumer Exhaust VCPs 19(7)% 38(9)% Gas 13(6)% Fuel Diesel 14(4)% Exhaust 15(5)% Upstream Emissions Industrial **VCPs** VOC Emissions = 350 ± 50 Gg

McDonald et al. (*Science* 2018)

Volatile Chemical Products now Major Urban Source

Gkatzelis et al. (ES&T 2021)

Warneke et al. (*J. Geophys. Res.* 2012)

Highest Ozone Observed In NYC in Decades during Large Heatwave

Obs Max = 118 ppb Model Max = 119 ppb ∑(Unhealthy) ~ 26 million people

Coggon et al. (PNAS 2021)

Research Objectives

- Quantify emerging urban source of VOCs
- Model impacts on ground-level ozone formation
- Assess the implications for vehicle electrification on reducing ozone

Summer 2021 Field Work to Investigate Urban Air Quality

Mobile Laboratory contains:

- (1) PTR-ToF-MS for VOCs
- (2) NOxCRDS for NO, NO2, O3, and NOy
- (3) Picarro for GHGs
- (4) Cannister system for sampling VOCs

GOALS

Drive through LA and Las Vegas to measure the spatial distribution of emissions in heavily urban areas.

Identifying Chemical Markers for Urban Emission Sources

Coggon et al. (Atmos. Chem. Phys. accepted)

Using Chemical Fingerprints to Source Apportion VOCs

Coggon et al. (*Atmos. Chem. Phys.* accepted)

Input Cooking Emissions into WRF-Chem Model

Becky Schwantes (NOAA CSL)

VOC Reactivity Underestimated 20-40% without Cooking

Better Agreement with Observations with Cooking

Becky Schwantes (NOAA CSL)

Los Angeles Ozone Formation by Emissions Source

Impact on Los Angeles MDA8 Ozone from Vehicle Electrification

Present Day Los Angeles (Aug 2021)

Electrify Cars

AQI and population impacted

Impact on Los Angeles MDA8 Ozone from Vehicle Electrification

Present Day Los Angeles (Aug 2021)

Electrify Cars + Trucks

AQI and population impacted

Impact on Los Angeles MDA8 Ozone from Vehicle Electrification

Present Day Los Angeles (Aug 2021)

Electrify Cars + Trucks + Offroad Equipment

AQI and population impacted

More Field Data in Large Interagency AQ Campaign in 2023

https://csl.noaa.gov/projects/ages/

Summary

- Non-fossil fuels dominate urban anthropogenic VOC emissions, including volatile chemical products (~50%) and cooking emissions (~20%)
- Adding cooking emissions helps close urban VOC budget
- Electrifying mobile source engines (on-road + off-road) potentially effective at moving most areas of Los Angeles into ozone attainment

Future Need: Better linkage between climate models with weather models utilized for predicting air quality