

Air Quality at NOAA Research, applications and products

Dr. Monika Kopacz

Atmospheric Chemistry, Carbon Cycle and Climate (AC4) Program manager
NOAA co-chair for Air Quality and Community Health Research Subcommittee (ACRS), under OSTP
Advisor to GeoXO Atmospheric Composition instrument (ACX) Science Team
Air Quality Lead for NOAA One Health group

CPASW, March 26, 2024

NOAA's mandates for atmospheric composition research, operations, and products

NOAA's research and

operational Atmospheric

applications as part of the

agency's mission to protect

Composition products

address numerous

lives and property

NOAA has numerous mandates to observe and predict Atmospheric Composition, e.g. 2021 EPA-NOAA **MOA** on Cooperation in Forecasting Air quality

NOAA air quality capabilities

Measurements

Monitoring

Models

Focus: observe, understand, and predict atmospheric chemical composition and air quality

Highlights in this panel

Overview and listening session

TRL9

- Engagement with external scientists and stakeholders via competitive grants (this presentation) OAR/CPO
- Wildfire smoke information (Amy Huff) NESDIS
- Evolving urban atmosphere (Brian McDonald) OAR/CSL
- Potential future direction: AQ and health connections -TRL "0" dust research (Karin Ardon-Dryer) Texas Tech U.

NOAA Air Quality Forecasting

National Air Quality Forecast Guidance (NAQFC)

NOAA

Develop & evaluate models; provide operational AQ predictions

Spokane, WA

Maintain national emissions, monitoring data; disseminate/interprete AQ forecasts

State and local agencies

Provide emissions, monitoring data AQI forecasts

NWS Forecast Office Spokane, WA

NWS Insider

The NWS/OSTI Air Quality (AQ) Program annual workshop brought together NWS AO government AO forecasters, and representatives from other partner agencies including EPA and ECCC, to review NWS AQ workshop was held in a hybrid format fron NCWCP in College Park, MD.

Home News & Updates ✓ More ✓ Q

Air quality forecasting relies on a strategic partnership with EPA and state and local air quality agencies.

K\$

(Program management: Monika Kopacz and Shiv Das)

Wildfire and smoke

Aerosols/PM

Urban atmosphere

Engaging science community: AC4 program

Satellite Modeling measurements

Field

measurements

Ground based measurements

遊

Future geostationary satellite observations: GeoXO: hourly AQ data from ACX!

https://www.nesdis.noaa.gov/next-generation/geostationary-extended-observations-geoxo

GeoXO ACX product development lead:

Shobha Kondragunta (NESDIS)

GeoXO ACX user lead: Greg Frost (OAR)

First ACX Science Team meeting in College Park, MD on May 7-9, 2024. Registration is now open to all

Interested in collaborating with AC4?

Monika Kopacz (AC4 Program manager): monika.kopacz@noaa.gov

Shiv Das (AC4 Program Specialist): shiv.das@noaa.gov

Website: cpo.noaa.gov/ac4

Ö

AC4 Funded institutions and private corporations

Fires: recent AC4 investments

Fire Lab in Missoula, MT (2016)

Fied deployment (2019)

Contents lists available at ScienceDirect

Atmospheric Environment

McClure and Jaffe, PNAS 2018

The impact of wildfire smoke on ozone production in an urban area: Insights from field observations and photochemical box modeling

Matthew Ninneman , Daniel A. Jaffe

School of Science, Technology, Engineering and Mathematics, University of Washington Bothell, 18115 Campus Way NE, Bothell, WA, 98011, USA

큉

Fire and smoke science and services

Process understanding

Models and forecasts

Data

Satellite observations: JPSS (polar-orbiting)

https://www.nesdis.noaa.gov/about/our-offices/joint-polar-satellite-system-jpss-program-office

Visible Infrared Imaging Radiometer Suite (VIIRS)

- Fire detection
- Fire radiative power
- Aerosol type
- Aerosol optical depth
- Aerosol concentration

Cross-track Infrared Sounder (CrIS)

- Ozone
- Carbon monoxide
- Carbon dioxide
- Methane
- Ammonia

Ozone Mapping and Profiler Suite (OMPS)

- Ozone
- Nitrogen dioxide
- Sulfur dioxide
- Formaldehyde

Smoke

NOAA

Dust

湾

ð

Urban air quality: NOAA field campaigns

∞

NOAA's One Health

This **NOAA-wide Group** advances NOAA's science and service to inform health decisions through:

delivery of useful prediction products, data and tools

Thematic Areas:

Extreme Conditions

Heat, Drought, Severe Weather

The Arctic

Dramatic climate-driven changes to regional ecosystems impact local human health

Benefits from the Sea

Marine products and nutrition

Air Quality

Aero-allergens, pollution Weather patterns and atmospheric drivers

Water-Borne Disease

Harmful algal bloom and Vibrio forecasts; water quality

Vector-Borne Disease

Climate impacts on ranges and transmission

Marine Mammal Disease

Marine Mammal Health, Zoonotic transmission, Unusual Mortality Events

25

AQ-drought connections – focus on health too?

Drought unhealthy air quality

Dust Bowl 2.0? Rising Great Plains dust levels stir concerns *Science 2020*

Dust

Plant stress

Drought leads to increased ozone and PM2.5 production (via increased precursor emissions), decreased deposition, decreased scavenging of pollutants

25

Types of research, data, models and services

- Monitoring: network of in-situ, remote-sensing, tall tower, sondes, and aircraft sampling for trace gases, aerosols, radiation, boundary layer characterization, surface-atmosphere exchange, meteorology
- Satellite: polar-orbiting and geostationary measurements of trace gas, aerosol, and fire products
- Field campaigns: assessment of impacts of regulatory changes, identification of new air pollution sources, assistance with understanding exceedances, development of process understanding
- Models: developing algorithms and products for emissions, air pollution chemistry, atmospheric physics and dynamics
- Wildfires: advancing smoke forecasts and tracking
- Operational air quality forecast guidance
- Rapid response hazards nowcasting and tracking

In house NOAA capabilities (OAR, NESDIS, NWS) and externally supported research (OAR/WPO and OAR/CPO)

Tools:

- Dust forecast
- AQ forecast guidance
- AirNow (airnow.gov) AQI (Air Quality Index)
- Wildfire field measurements and modeling understanding the spread and composition of smoke
- HRRR-smoke forecast
- Satellite monitoring smoke transport monitoring, aerosol monitoring (fire and in general)

Unknowns:

- Dust sources, chemical/biological composition and impacts
- Drought impacts on plant emissions

ථ

Types of research, data, models and services

- Monitoring: network of in-situ, remote-sensing, tall tower, sondes, and aircraft sampling for trace gases, aerosols, radiation, boundary layer characterization, surface-atmosphere exchange, meteorology
- Satellite: polar-orbiting and geostationary measurements of trace gas, aerosol, and fire products
- Field campaigns: assessment of impacts of regulatory changes, identification of new air pollution sources, assistance with understanding exceedances, development of process understanding
- Models: developing algorithms and products for emissions, air pollution chemistry, atmospheric physics and dynamics
- Wildfires: advancing smoke forecasts and tracking
- Operational air quality forecast guidance
- Rapid response hazards nowcasting and tracking

In house NOAA capabilities (OAR, NESDIS, NWS) and externally supported research (OAR/WPO and OAR/CPO)

Stakeholders for NOAA air quality products

and services

Who are our stakeholders?

- Research community
- Operational forecasters
- **Environmental regulators**
- Assessment bodies
- Public health officials
- Diplomats
- Press
- General public

How are we connecting with them?

- 1-on-1 engagement
- Conferences
- Websites
- Social media
- **Trainings**
- **Assessments**
- Public media

NOAR

Top Tweet earned 29.3K impressions

Ongoing #CaliforniaFires producing optically thick #smoke (dark red shading) today (31 Aug) that is spreading across north/central CA and central NV, shown by #GOES17 #ABI aerosol optical depth composite (15-18 UTC) overlaid on GeoColor imagery, from the AerosolWatch website. pic.twitter.com/ZqxplCPalA

STAR Atmospheric Composition Product Training Featuring Aerosol, Fire, and Trace Gas Satellite Products from ABI, VIIRS, and TROPOMI