

Climate Change Impacts on Harmful Algal Blooms: An Integration of Data-Driven and Downscaling Approaches

Zhengxiao Yan (presenter, PhD candidate) Nasrin Alamdari (Advisor, PI)

March 28, 2024

Civil and Environmental Engineering, FAMU-FSU College of Engineering FLORIDA STATE UNIVERSITY

FAMU-FSU College of Engineering

Background & Problem Statement

Background & Problem Statement

Algae can help sustain aquatic life by $\sqrt{}$ contributing to food and O_2 .

What

In certain conditions, may gause the rapid growth of harmful algae, an HAB

HABs will do harmful on:

Human health (Food, Drinking water...)

Economics (Tourism, Fisheries industry...)

Environment (Fish die-offs, Seagrass

degradation...)

There is no final & consistent conclusion on the mechanism of HAB formation

Chemical Factors?Physical Factors?Biological Factors?Climatic Factors?PredictionFind out important
featuresEarly-warning and
prepare in advance

A green and brown algae bloom in August 2020

North Biscayne Bay, bloom of Anadyomene spp. https://www.miamiwaterkeeper.org/fish_kill, 3

Humidity

Background & Problem Statement

A summary of the suitable and optimal temperature for the growth of some harmful algae species

> Experiments Or Data-Driven?

Objective

Evaluate the climate change impacts on HABs based on different climate models and future scenarios.

Assumptions

- 1. Machine learning models can conduct small-magnitude extrapolation tasks.
- The biases in a climate model's output can be corrected by aligning the modeled data's statistical distribution with the observed data's distribution for a historical reference period.
- 3. Future water quality data are considered as same as the historical data.

FAMU-FSU College of Engineering

Methodology

Case study research area

	Variables		
Variable Type	Name of Variable	Unit	
Dependent /ariable	Chlorophyll-a	mg/m3	
ndependent /ariables	Ammonia Nitrogen	mg/L	1
	NOx	mg/L	
	Dissolved Oxygen	mg/L	
	рН	-	 Water Quality data
	Total Phosphorus	mg/L	
	Turbidity	NTU	
	Water Temperature	С]
	Discharge	cfs	Hydrological data
	Specific Humidity	kg/kg	<u> </u>
	Wind Speed	m/s	
	Precipitation	kg/m2	- Climate data
	Shortwave Radiation	W/m2	
	Min, Max, Air Temperature	С	
	Developed Percent	%	Land use data

FAMU-FSU College of Engineering

Preliminary Results

Preliminary Results

Predictive model metrics

Metrics	SVM Chl-a	RF Chl-a	MLP Chl-a	MLR WT	MLR Discharge
R ² in train	0.82	0.80	0.64	0.89	0.83
R ² in test	0.74	0.62	0.66	0.91	0.83
MAE in train	0.69	0.70	0.99	0.92	83.2
MAE in test	0.92	1.18	1.12	0.71	105.9
MAPE in train	0.33	0.34	0.48	0.04	0.16
MAPE in test	0.26	0.33	0.32	0.03	0.31

Preliminary Results

Predictive model metrics

This SVM predictive model will be applied to predict future Chlorophyll-a concentration

Feature Importance

Preliminary Results

High Precipitation (kg/m2) -1m Shortwave Radiation Flux (W/m2) -10m Discharge (cfs) -1m Shortwave Radiation Flux (W/m2) -8m Minimum Temperature (^C) Water Temperature (^C) - 10m Specific Humidity (kg/kg) -6m Wind Speed (m/s) Shortwave Radiation Flux (W/m2) -4m Discharge (cfs) -7m Turbidity (NTU) Discharge (cfs) -9m Precipitation (kg/m2) -10m pH - 1m Water Temperature (^C) - 9m Specific Humidity (kg/kg) -2m Shortwave Radiation Flux (W/m2) -9m Maximum Temperature (^C) -11m Shortwave Radiation Flux (W/m2) -6m Specific Humidity (kg/kg) 0.5 -1.0 -0.5 0.0 1.0 1.5 2.0 SHAP value (impact on model output)

Feature value

Low

Preliminary Results

The observed trend has a steeper slope compared to the predicted SSPs, suggesting that future scenarios (SSP126, SSP245, and SSP585) may have slower trends compared to historical data.

FAMU-FSU College of Engineering

Acknowledgement to EPA and NSF

FAMU-FSU College of Engineering

Thanks for your listening and suggestions!

Zhengxiao Yan

<u>zy21@fsu.edu</u> +1 8509805127