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Karenia brevis, single-celled, marine dinoflagellate

RED TIDE

Red tide in Florida and Texas is caused by the rapid growth of a microscopic algae called Karenia
brevis. When large amounts of this algae are present, it can cause a harmful algal bloom (HAB) that
can be seen from space. NOAA issues HAB forecasts based on satellite imagery and cell counts of

Karenia brevis collected in the field and analyzed by NOAA partners.

https://start1.org/red-tide

g | ' https://oceanservice.noaa.gov/hazards/hab/gulf-mexico.html
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Red tide projection is challenging as multiple drivers can alter the
occurrence, intensity, and toxicity of red tides.

Is it possible to forecast red tides by using Earth system models

outputs directly? YES and NO.
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Earth system models for red tides in a changing climate based
on teleconnections between global and regional phenomena
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A high resolution-ESM can reproduce regional phenomena
like Loop Current, a warm ocean current that drives red tides
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« Loop Current is an important factor that controls the occurrence of red tide.

 Maze et al. (2015) showed that the Loop current in a north position penetrating through the Gulf of Mexico is
a necessarily condition for a large red tide bloom to occur (based on red tide data in the red box). 5

« With approximately 0.3 divisions per day, Karenia brevis is a slow growing dinoflagellate that requires an
area with mixing slower than the growth rate to form a bloom.



Independent

o Experiment Ocean model Ocean . ESM nominal
model subset  Institution Country  Model (Reference) Members R Ocean grid R
ID resolution Model resolution
(IMS)
IMS01 NCAR USA CESM1-CAMS5-SE-HR  hist-1950 rlilpifl 0.1° (11 km) POP2 POP2-HR 25 km
(Chang et al. 2020) nominal
resolution
IMS02 cMmcC Italy CMCC-CM2-HR4 hist-1950 rlilplfl 0.25¢ from NEMO v3.6 ORCA025 25 km
(Cherchi et al. 2019) the Equator
degrading at
the poles
CMCC-CM2-VHR4 hist-1950 rlilpifl 0.25¢ from NEMO v3.6 ORCA025 25 km
(Cherchi et al. 2019) the Equator
degrading at
the poles
IMS03 CNRM- France CNRM-CM6-1-HR hist-1950 r(1-3)ilp1f2  0.25¢ (27-28 NEMO v3.6 eORCA025 25 km
CERFACS (Voldoire et al. 2019) km) nominal
resolution
CNRM-CM6-1-HR historical rlilpif2 0.25¢ (27-28 NEMO v3.6 eORCA025 25 km
(Voldoire et al. 2019) km) nominal
resolution
IMS04 DOE-E3SM- USA E3SM-1-0 (Golaz et al. historical r(1-5)i1p1fl 60 kmin mid- MPAS-O EC60to30 100 km
Project 2109) latitudes and
30 km at the
equator and
poles
IMS05 EC-Earth- Europe EC-Earth3P (Haarsma hist-1950 r(1-3)ilp2f1 about 1° (110 NEMOv3.6 ORCA1l 100 km
Consortium etal. 2020) km)
IMS06 EC-Earth- Europe EC-Earth3P-HR hist-1950 r(1-3)ilp2f1 about 0.25¢ NEMO v3.6 ORCA025 25 km
Consortium (Haarsma et al. 2020) (27-28 km)
IMS07 ECMWF Europe ECMWEF-IFS-HR hist-1950 r(1-6)ilpifl  25km NEMO v3.4 ORCA025 25 km
(Roberts et al. 2018) nominal
resolution
IMS08 ECMWEF-IFS-MR hist-1950 r(1-3)ilpifl  25km NEMO v3.4 ORCA025 25 km
(Roberts et al. 2018) nominal
resolution
IMS09 NOAA-GFDL USA GFDL-CM4 (Held et al historical rlilpifl 0.25¢ (27-28 MOM6 tri-polar 50 km
2019) km) nominal grid
resolution
GFDL-ESM4 (Held et al historical r(2-3)ilp1fl  0.25c (27-28 MOM6 tri-polar 50 km
2019) km) nominal grid
resolution
IMS10 NERC UK HadGEM3-GC31-HH  hist-1950 rlilpifl 8 km nominal NEMOv3.6 ORCA12 10 km
(Roberts et al. 2019) resolution
MOHC- UK HadGEM3-GC31-HM  hist-1950 rli(1-3)p1fl 25 km NEMOv3.6 ORCA12 50 km
NERC (Roberts et al. 2019) nominal
resolution
IMS11 MOHC UK HadGEM3-GC31-MM  hist-1950 rli(1-3)p1fl 25 km NEMO v3.6 ORCA025 100 km
(Roberts et al. 2019) nominal
resolution
HadGEM3-GC31-MM historical r(1-4)ilp1f3  25km NEMO v3.6 ORCA025 25 km
(Roberts et al. 2019) nominal

resolution

Ensemble Modeling Approaches

An lllustration
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https://www.nature.com/articles/s41558-020-0731-2

Ensemble ESMs for loop current
* 41 CMIP6 model runs from 14 different
models developed by eight institutes
* Prescreening-based subset selection
Excluding non-representing models
* Application-specific optimal model weighting
6
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Prescreening-based Subset Selection: Loop Current

(a) Reanalysis Data: Loop Current North Position

=« CMIP6: zos - Sea Surface Height Above Geoid
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Is the maximum difference of the zos data at the north and the south segment.

... LC-N: Loop Current in the north position LC-S: Loop Current in the south position
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Prescreening

al. Select input data

Raw gridded CMIP6
model output of sea
surface height (zos):
hist-1950 and historical

(Section 2.2)

Raw gridded
observation reanalysis
product of sea surface
height (zos)

(Section 2.2)

Raw Karenia brevis
concentration data

(Section 2.2)

>

a2. Identify independent
model subsets

Institutional democracy
and ocean grid to
identify independent
model subsets

(Section 2.3)

A4

a3. Process input data

Loop Current position of
independent model
subsets following the
method of Maze et al.
(2015)

(Section 2.4)

Loop Current position of
observation reanalysis
data following the
method of Maze et al.

(2015)
(Section 2.4)

Karenia brevis no bloom
or large bloom following

* the method of Maze et

al. (2015)
(Section 2.2)

a4. Define prescreening metrics

* Physical phenomena
simulation (y,)

, ad pn‘bscillating event
oterwise, iepresentation (y,)

* Oscillating event realism (y,)
(Section 2.5)

ab5. Score independent
model subsets

Scoring of independent
- model subsets based on
"". performance ranking given
g prescreening metrics

(Section 3.1)

a/. Evaluate prediction

\ Evaluate prediction of
independent model subsets
;. given defined predictors

(Section 3.1)

. Define prediction metrics

Oscillating event frequency (y.)
Temporal match error (ys)
Karenia brevis error (y)

Root-mean-squareerror (y;)
(Section 2.5)

Prescreening

Three prescreening metrics based
on a model’s ability to reproduce
main features of the physically
interpretable relationships of
interest (prior info).

Oscillating event representation
If the sea surface height is
consistently higher at the north
segment than at the south
segment, then the model is unable
to represent alternation of LC-N
and LC-S.

Scoring

Score=1o0r0

L 0<Y. Hy \(h)<T
Vo = T
0, =1 Hyc y(h)=T



Prescreening-based subset selection can find representative
and skillful models for a given application

(a) Reanalysis Data: Loop Current North Position
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Subset selection

b1l. Select input data

Raw gridded CMIP6
model output of sea
surface height (zos):
hist-1950 and historical

(Section 2.2)

Raw gridded
observation reanalysis
product of sea surface
height (zos)

(Section 2.2)

b2. Subset selection

Composition of multi-
model ensembles given
scores based on

—* performance ranking of

independent model

subsets
(Section 2.6)

ab. Score T
independent
model subsets

h3. Process input data

Loop Current position of
multi-model ensembles

following the method of
Maze et al. (2015)

(Section 2.4)

Loop Current position of
observation reanalysis
_ datafollowing the

Raw Karenia brevis
concentration data

(Section 2.2)

" method of Maze et al.

(2015)
(Section 2.4)

Karenia brevis no bloom
or large bloom following

-~ the method of Maze et

al. (2015)

(Section 2.2)

b4. Define prediction metrics

* Oscillating event frequency (y,)
* Temporal match error (ys)
* Karenia brevis error (yg)

* Root-mean-square error (y;)
(Section 2.5)

b5. Evaluate prediction

Evaluate prediction of multi-
model ensembles given
4 defined predictors

(Section 3.2)

Subset Selection

Four metrics to evaluate
predictive performance.

Oscillating event frequency
the ratio of the number of a LC
south position (LC-S) to the total
number of intervals

_ Zj;l HLC—S (ht)
T

Va4

The LC-S ratio is 0.27 for reanalysis data.
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Using the prescreening-based subset selection improves the
simulation of Loop Current.

Ensemble including all models
(SME3210)

Excluding models based on prior
information (SME321X)

Non-representative models are
additionally excluded based on
prescreening (SME32XX)

Only representative and skillful
models are included based on
prescreening (SME3XXX)
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The ensemble prescreening is
empirical, but practical and
flexible for using prior knowledge
on key features of interest.

The presented subset-selection
method is flexible as it scores
each model given multiple binary
criteria.

We provides a straightforward
and easy-to-implement approach
that can be used for many
climate services in different
sectors as needed.



Prescreening-based Subset Selection

a. Select input data

Raw gridded CMIP6 and
reanalysis data of sea
surface height above
geoid (zos) with
resolution < 25km

(Section 2.1)

Raw Karenia brevis cell
count data

b. Model independence

Create independent
model subsets using
institution democracy
and ocean grid as a
secondary criterion
(Section 2.1)

(Section 2.1)

c. Process input data

Determine Loop Current
position using CMIP6 and

~, reanalysis data following

the method of Maze et

al. (2015)
(Section 2.2)

Determine red tide no
bloom or large bloom,

, following the method of

Maze et al. (2015)

(Section 2.1)

d. Subset selection

Score ensemble
members, and

~, selectensemble

members of each
ensemble accordingly
(Section 2.3)

3

| | | |
I Optimal Model Weighting I
| | | |

\J

e. Estimate model weights

Optimization algorithm
Generate and find optimal weights for
ensemble members

!

Objective Function (OF)
Evaluate the OF that minimizes

Processing input data

Determine the Loop Current position using CMIP6 and reanalysis

data given model weights following the method of Maze et al. (2015)

(Section 2.4)

Oscillating event frequency error (x,)

Temporal match error (x,)

Temporal match error LC-S (x5)

Red tide bloom error (x,)

Root-mean-square error (xs)

(Section 2.4)

(Section 2.2)

¥

Predictive Performance Evaluation

f. Define metrics

Ensemble performance metrics (Xy-Xs)
Ensemble performance and size metrics: AIC (xs) and BIC (x;) scores —* multi-model ensembles

g. Evaluate prediction

Evaluate model weights and prediction of

(Section 2.5)

(Section 3)

Application-specific
optimal model weighting

Model weight w

K

k= Vi =1

min f = min

Wik Wik

(x, + 1)

i=1

Oscillating event count error
N N
X = ‘anl H,. s(h,) _anl H, o s(h, )

Minimize the objective function using the
covariance matrix adaptation evolution
strategy (CMA-ES)

12



While we can use model weighting instead of subset selection, a
critical pitfall of model weighting is error cancelation

Ensemble including all models
(SME3210)

Excluding models based on prior
information (SME321X)

Non-representative models are
additionally excluded based on
prescreening (SME32XX)

Only representative and skillful
models are included based on
prescreening (SME3XXX)
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Application-specific optimal model weighting

—

Oscillating event frequency error (x1) - /

Optimal model weighting can improve
predictive performance, but be cautious
about error cancellation.

Temporal match ermror (x2) -

—

Red tide bloom error {xs) -

Relative BMSE (x5, -

Normaized AIC score (Xg, aicn)

—  Prescreening-based subset selection may

be adequate.
e Practical advantage:

v" Flexibility in ensemble calibration

v' Optimization with multiple objectives
and multiple metrics

v Objectives and metrics can be adaptive
to different problems and physically
interpretable.

0.0 0.2 0.4 0.6 0.8 L

SME3XXX: («) Prior information (v ) Prescreening-based subset selection (x) Optimal weighting |
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WMES2xX: (v ) Prior information (v ) Prescreening-based subset selection () Optimal weighting

(=) Parsimonious

WMEIXXX: () Prior information (v ) Prescreening-based subset selection () Optimal weighting

{+ ) Parsimonious
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Selected results (off-line or maybe online in the future) of Earth System Models
can be used directly for regional problems, not red tide yet.
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