Application-specific model selection and model weighting of Earth system models with application to regional environmental management of red tide

> Ming Ye (mye@fsu.edu), Florida State University Ahmed S. Elshall, Florida Gulf Coast University Sven A. Kranz, Rice University Julie Harrington, Florida State University Xiaojuan Yang, Oak Ridge National Laboratory Yongshan Wan, Environmental Protection Agency Mathew Maltrud, Los Alamos National Laboratory

National Science Foundation Award 1939994

48th Annual Climate Diagnostics and Prediction Workshop 21st Annual Climate Prediction Applications Science Workshop March, 28, 2024 Karenia brevis, single-celled, marine dinoflagellate

https://start1.org/red-tide

https://www.sarasotama fitness/2022/07/red-tide

Red tide in Florida and Texas is caused by the rapid growth of a microscopic algae called *Karenia* brevis. When large amounts of this algae are present, it can cause a harmful algal bloom (HAB) that can be seen from space. NOAA issues HAB forecasts based on satellite imagery and cell counts of *Karenia brevis* collected in the field and analyzed by NOAA partners.

https://oceanservice.noaa.gov/hazards/hab/gulf-mexico.html

Red tide projection is challenging as multiple drivers can alter the occurrence, intensity, and toxicity of red tides.

Is it possible to forecast red tides by using Earth system models outputs directly? YES and NO.

Elshall et al. 2022 EES

E3SM of the Department of Energy

Earth system models for red tides in a changing climate based on teleconnections between global and regional phenomena

Rackow et al. (2019 GMD)

A high resolution-ESM can reproduce regional phenomena like Loop Current, a warm ocean current that drives red tides

- Loop Current is an important factor that controls the occurrence of red tide.
- Maze et al. (2015) showed that the Loop current in a north position penetrating through the Gulf of Mexico is a necessarily condition for a large red tide bloom to occur (based on red tide data in the red box).
- With approximately 0.3 divisions per day, *Karenia brevis* is a slow growing dinoflagellate that requires an area with mixing slower than the growth rate to form a bloom.

Independent				Exporimont		Ocoan model	Ocean		ESM nominal
model subset (IMS)	Institution	Country	Model (Reference)	ID	Members	resolution	Model	Ocean grid	resolution
IMS01	NCAR	USA	CESM1-CAM5-SE-HR (Chang et al. 2020)	hist-1950	r1i1p1f1	0.1° (11 km) nominal resolution	POP2	POP2-HR	25 km
IMS02	СМСС	Italy	CMCC-CM2-HR4 (Cherchi et al. 2019)	hist-1950	r1i1p1f1	0.25° from the Equator degrading at the poles	NEMO v3.6	ORCA025	25 km
			CMCC-CM2-VHR4 (Cherchi et al. 2019)	hist-1950	r1i1p1f1	0.25∘ from the Equator degrading at the poles	NEMO v3.6	ORCA025	25 km
IMS03	CNRM- CERFACS	France	CNRM-CM6-1-HR (Voldoire et al. 2019)	hist-1950	r(1-3)i1p1f2	0.25° (27-28 km) nominal resolution	NEMO v3.6	eORCA025	25 km
			CNRM-CM6-1-HR (Voldoire et al. 2019)	historical	r1i1p1f2	0.25° (27-28 km) nominal resolution	NEMO v3.6	eORCA025	25 km
IMS04	DOE-E3SM- Project	USA	E3SM-1-0 (Golaz et al. 2109)	historical	r(1-5)i1p1f1	60 km in mid- latitudes and 30 km at the equator and poles	MPAS-O	EC60to30	100 km
IMS05	EC-Earth- Consortium	Europe	EC-Earth3P (Haarsma et al. 2020)	hist-1950	r(1-3)i1p2f1	about 1º (110 km)	NEMO v3.6	ORCA1	100 km
IMS06	EC-Earth- Consortium	Europe	EC-Earth3P-HR (Haarsma et al. 2020)	hist-1950	r(1-3)i1p2f1	about 0.25∘ (27-28 km)	NEMO v3.6	ORCA025	25 km
IMS07	ECMWF	Europe	ECMWF-IFS-HR (Roberts et al. 2018)	hist-1950	r(1-6)i1p1f1	25 km nominal resolution	NEMO v3.4	ORCA025	25 km
IMS08			ECMWF-IFS-MR (Roberts et al. 2018)	hist-1950	r(1-3)i1p1f1	25 km nominal resolution	NEMO v3.4	ORCA025	25 km
IMS09	NOAA-GFDL	USA	GFDL-CM4 (Held et al 2019)	historical	r1i1p1f1	0.25° (27-28 km) nominal resolution	MOM6	tri-polar grid	50 km
			GFDL-ESM4 (Held et al 2019)	historical	r(2-3)i1p1f1	0.25° (27-28 km) nominal resolution	MOM6	tri-polar grid	50 km
IMS10	NERC	UK	HadGEM3-GC31-HH (Roberts et al. 2019)	hist-1950	r1i1p1f1	8 km nominal resolution	NEMO v3.6	ORCA12	10 km
	MOHC- NERC	UK	HadGEM3-GC31-HM (Roberts et al. 2019)	hist-1950	r1i(1-3)p1f1	25 km nominal resolution	NEMO v3.6	ORCA12	50 km
IMS11	МОНС	UK	HadGEM3-GC31-MM (Roberts et al. 2019)	hist-1950	r1i(1-3)p1f1	25 km nominal resolution	NEMO v3.6	ORCA025	100 km
			HadGEM3-GC31-MM (Roberts et al. 2019)	historical	r(1-4)i1p1f3	25 km nominal resolution	NEMO v3.6	ORCA025	25 km

Ensemble Modeling Approaches

https://www.nature.com/articles/s41558-020-0731-2

Ensemble ESMs for loop current

- 41 CMIP6 model runs from 14 different models developed by eight institutes
- Prescreening-based subset selection
 Excluding non-representing models
- Application-specific optimal model weighting

Prescreening-based Subset Selection: Loop Current

(a) Reanalysis Data: Loop Current North Position

-0.2

0.0

-0.4

-0.6

0.2

0.4

LC-N is a necessary condition of red tide large bloom.

Prescreening

Prescreening

a1. Select input data	a2. Identify independent model subsets	a3. Process input data	 Physical phenomena simulation (y₁)
Raw gridded CMIP6	Institutional democracy	Loop Current position of	, ad one Oscillating event
model output of sea	and ocean grid to	independent model	oterwise, nepresentation (y_2)
surface height (zos):	identify independent	subsets following the	 Oscillating event rea
hist-1950 and historical	model subsets	method of Maze et al.	(Se
(Section 2.2)	(Section 2.3)	(2015) (Section 2.4)	a5. Score independe model subsets
			Scoring of independ model subsets based
Raw gridded		Loop Current position of	performance ranking
observation reanalysis		observation reanalysis	prescreening metric
product of sea surface		data following the	
height (zos)		method of Maze et al.	(Se
		(2015)	a7. Evaluate predict
(Section 2.2)		(Section 2.4)	Evaluate prediction
			Evaluate prediction of
			independent model
Raw Karenia brevis		Karenia brevis no bloom	given defined predic
concentration data		or large bloom following	
-		the method of Maze et	150
		al. (2015)	(36
(Section 2.2)		(Section 2.2)	a6. Define prediction met
			Oscillating event freque

a4. Define prescreening metrics

lism (y₃) ection 2.5)

ent

lent d on g given

ection 3.1)

ion of subsets ctors

ection 3.1)

- rics
- $ency(y_4)$
- Temporal match error (y_5)
- Karenia brevis error (y_6)
- Root-mean-square error (y_7) (Section 2.5)

Three prescreening metrics based on a model's ability to reproduce main features of the physically interpretable relationships of interest (prior info).

Oscillating event representation

If the sea surface height is consistently higher at the north segment than at the south segment, then the model is unable to represent alternation of LC-N and LC-S.

Scoring

Score = 1 or 0

 $y_2 =$

$$\begin{cases} 1, & 0 < \sum_{t=1}^{T} H_{LC-N}(h_t) < T \\ 0, & \sum_{t=1}^{T} H_{LC-N}(h_t) = T \end{cases}$$

8

Prescreening-based subset selection can find representative and skillful models for a given application

Subset selection

b1. Select input data	b2. Subset selection	b3. Process input data	b4. Define prediction metrics	
Raw gridded CMIP6 model output of sea surface height (zos): hist-1950 and historical	Composition of multi- model ensembles given scores based on performance ranking of independent model	Loop Current position of multi-model ensembles following the method of Maze et al. (2015)	 Oscillating event frequency (y₄) Temporal match error (y₅) Karenia brevis error (y₆) Root-mean-square error (y₇) (Section 2.5) 	Four metrics to evaluate predictive performance.
(Section 2.2) Raw gridded observation reanalysis product of sea surface	subsets (Section 2.6) a5. Score independent model subsets	(Section 2.4) Loop Current position of observation reanalysis data following the	b5. Evaluate prediction Evaluate prediction of multi- model ensembles given defined predictors	Oscillating event frequency the ratio of the number of a LC south position (LC-S) to the total number of intervals
height (zos) (Section 2.2) Raw Karenia brevis		method of Maze et al. (2015) (Section 2.4) Karenia brevis no bloom	(Section 3.2)	$y_4 = \frac{\sum_{t=1}^T H_{LC-S}(h_t)}{T}$
concentration data (Section 2.2)		or large bloom following the method of Maze et al. (2015) (Section 2.2)	The L	C-S ratio is 0.27 for reanalysis data.

Subset Selection

Using the prescreening-based subset selection improves the simulation of Loop Current.

Ensemble including all models (SME3210)

Excluding models based on prior information (SME321X)

Non-representative models are additionally excluded based on prescreening (SME32XX)

Only representative and skillful models are included based on prescreening (SME3XXX)

Large Bloom No Bloom

- The ensemble prescreening is empirical, but practical and flexible for using prior knowledge on key features of interest.
- The presented subset-selection method is flexible as it scores each model given multiple binary criteria.
- We provides a straightforward and easy-to-implement approach that can be used for many climate services in different sectors as needed.

Application-specific optimal model weighting

Model weight w

$$\sum_{k=1}^{K} w_k = 1$$

$$\min_{w_k} f = \min_{w_k} \left[\prod_{i=1}^5 (x_i + 1)^{c_i} \right]$$

Oscillating event count error

$$x_{1} = \left| \sum_{n=1}^{N} H_{LC-S}(h_{n}) - \sum_{n=1}^{N} H_{LC-S}(h_{n,obs}) \right|$$

Minimize the objective function using the covariance matrix adaptation evolution strategy (CMA-ES)

While we can use model weighting instead of subset selection, a critical pitfall of model weighting is error cancelation

Application-specific optimal model weighting

- Optimal model weighting can improve predictive performance, but be cautious about error cancellation.
- Prescreening-based subset selection may be adequate.
- Practical advantage:
 - ✓ Flexibility in ensemble calibration
 - Optimization with multiple objectives and multiple metrics
 - Objectives and metrics can be adaptive to different problems and physically interpretable.

SME3210: (×) Prior information	(×) Prescreening-based subset selection	(×) Optimal weighting	(-) Parsimonious
SME321X: () Prior information	(x) Prescreening-based subset selection	(x) Optimal weighting	(-) Parsimonious
SME3XXX: () Prior information	((×) Optimal weighting	(-) Parsimonious
WME32XX: () Prior information	(<) Prescreening-based subset selection	(✓) Optimal weighting	(×) Parsimonious
WME3XXX: () Prior information	(✓) Prescreening-based subset selection	(✓) Optimal weighting	(✓) Parsimonious

Selected results (off-line or maybe online in the future) of Earth System Models can be used directly for regional problems, not red tide yet.

Prescreening-based subset selection is useful for developing an application-specific ensemble given a regional phenomenon.

Questions?

