Skillful Prediction of Seasonal Mean United States Precipitation Based on Past Global Sea Surface Temperatures

Hui Wang, David DeWitt, Wanqiu Wang, Emerson LaJoie Arun Kumar, Hailan Wang, Yutong Pan*, Peitao Peng

NOAA/NWS/NCEP/Climate Prediction Center *Earth Resources Technology (ERT), Inc.

NOAA's 48th Climate Diagnostics and Prediction Workshop and 21st Climate Prediction Applications Science Workshop Tallahassee, Florida, 26–29 March 2024

Background

Switanek et al. (2020)
CLSST model

Wang et al. (1999)
SVD-based model

Combined-Lead SST (CLSST) Model (Switanek et al. 2020)

$$W_{m} = \begin{cases} AC & \text{if } AC > 0\\ 0 & \text{if } AC < 0 \end{cases}$$

Anomaly correlation (AC) skill assessed over the calibration period for each SST lag (m).

Unique Features

- 1) Predictive information from SSTs up to 18 months prior
- 2) Contributions optimized through weighting

Calibration Period

Validation Period

Lag Correlation

Cold Season Precipitation vs. Niño 3.4 SST (Previous 1–18 months)

Forecast Skill CLSST vs. NMME

AC Skill (1982–2021) Seasonal Precipitation

CLSST Model

- Better skill for DJF and SON in western U.S.
- Predictors: Niño 3.4 SST

 Limited source of predictability

Additional sources?
O Using global SSTs

SVD-Based Model (Wang et al. 1999)

Calibration Period

Validation Period

- SVD: Relationship between SST and U.S. precipitation
- Model predicted SST projected onto the SVD SST pattern
 - □ SST projection coefficient
 - Corresponding precipitation coefficient
 - Precipitation forecast

DJF 1997/98

SVD-CLSST Model

Weights: W = AC x |AC|

- Putting more weight on high ACs
- Including negative ACs

Unique Features Retained

- Predictive information from SSTs up to 18 months prior
- 2) Contributions optimized through weighing

Calibration Period

Validation Period

Results

- Skill assessment of the SVD-CLSST model
- Comparison with NMME
- NMME and SVD-CLSST merged forecast

Forecast Skill SVD-CLSST vs. NMME

AC Skill (1982–2021) **Seasonal Precipitation**

SVD-CLSST Model

- Leave-5-yr-out cross validation
- **Overall better skill**
- More spatially homogeneous
- Lower skill in certain regions where NMME has higher skill

SVD modes: 30 SST lags: 1–18 months

-0.2

-0.3

-0.4

-0.5

-0.6

How does the AC skill change with lead time?

CONUS Averaged AC Skill

o Number of SVD modes

o Number of SST lags

White contour: NMME AC skill

Merged SVD-CLSST and NMME Forecast: DJF

AC Skill for DJF Pr 1982–2021

1-month lead forecast SVD modes: 30 SST lags: 1–18 months

Merged forecast of dynamical model (D) and statistical model (S):

 $FCST_{merged} =$ $(FCST_{D} \times W_{D} + FCST_{S} \times W_{S}) / (W_{D} + W_{S})$ $W = AC \times |AC|$

12

Summary

- The SVD-CLSST model exhibits superior skill compared to NMME, offering a spatially more homogenous distribution of high skill levels.
- Forecast skill tends to rise with an increase in the number of SVD modes and SST lags (predictors) used.
- The merged forecast provides valuable supplementation to NMME in areas where NMME demonstrates lower skill levels.

Future Work

- Understanding physical processes responsible for the lagged SVD relationships between global SST and U.S. precipitation.
- Potential application of precipitation from the SVD-CLSST model for drought prediction.