The Value of Dynamical Downscaling in the Seasonal Predictability of the Winter Seasonal Forecasts Over Florida

Dr. Jayasankar C B¹, Dr. Vasubandhu Misra^{1, 2} ¹Center for Ocean-Atmospheric Prediction Studies (COAPS) ²Department of Earth, Ocean, and Atmospheric Science Florida State University, Tallahassee, FL <u>icb@fsu.edu</u>

INTRODUCTION

• Florida's Spring Season:

 The driest season in the state, characterized by reduced precipitation and increased water scarcity

• Importance of Water Allocation:

 Critical for various sectors including agriculture, industry, and residential use, particularly in regions prone to water scarcity like Florida.

INTRODUCTION

• Planning Based on Winter Demand:

 Water managers rely on historical data of water demand during the winter season to inform their planning and allocation strategies for the subsequent spring season.

- Effective planning is essential for ensuring adequate water resources are allocated to meet the anticipated demand
- $\circ~$ It helps to mitigate potential shortages or overages

INTRODUCTION

Winter (November - February) rainfall is around 18 % of total annual rainfall

What we do?

- Develop "customized" winter seasonal forecasts for Florida; CLIFF: experimental seasonal CLImate Forecasts for Florida
- Communicate the CLIFF forecast with the water managers and Water Management District officials

Introduction

METHODOLOGY

Model Framework for Experimental Winter Forecast

5 - Global Models X 6 - Regional Models

30 ensemble member regional seasonal climate forecasts at a 10-km grid spacing over Florida

Introduction

Verification

Results

METHODOLOGY

Model Description

Physical Parameterization	AGCM	RSM
Deep convection	 RAS: Moorthi and Suarez (1992) SAS: Hond and Pan (1998) ZM: Zhang and McFarlane (1995) 	 RAS: Moorthi and Suarez (1992) SAS: Hond and Pan (1998)
Shallow convection	Tiedtke (1983)	Tiedtke (1983)
Cloud Scheme	Slingo (1987)	Zhao and Carr (1997)
Boundary layer	Hong and Pan (1996)	Hong and Pan (1996)
Land Model	Ek et al. (2003)	Ek et al. (2003)
Gravity wave drag	Alpert et al. (1988)	Alpert et al. (1988)
Longwave radiation	Chou and Lee (1996)	Chou and Lee (1996)
Shortwave radiation	Chou and Suarez (1994)	Chou and Suarez (1994)

METHODOLOGY

73 grid points

High-resolution models, such as CLIFF, represent realistic regional characteristics of Florida

points

1)

2)

3)

4)

5)

6)

7)

Five Water Management Districts (WMDs) of Florida:

Southwest Florida (SWFWMD)

Northwest Florida (NWFWMD)

Peace River Water Supply (PRM)

Tampa Bay Water Supply (TBW)

South Florida (SFWMD)

St. Johns River (SJRWMD)

Suwannee River (SRWMD)

Two Water Suppliers Within SWFWMD

Such models are essential for providing reasonable seasonal forecasts tailored to local-scale needs

Introduction	Methodology	Verification	Results	Conclusion	7
--------------	-------------	--------------	---------	------------	---

VERIFICATION

Seasonal forecast anomalies of SST over the Niño 3.4 region from CLIFF vs. HadSST

(both at zero-month lead NDJ and at one-month lead DJF)

NDJ season (0-month lead)

 The forecasted Niño-3.4 SST anomalies exhibit exceptionally high fidelity, indicating CLIFF's proficiency, particularly in remote ENSO forcing

Conclusion

Correlation Coefficient

Methodology

Verification

VERIFICATION

Reforecast Verification: Seasonal Precipitation

g

Real-time 2022-23 winter Forecast

• We issued three real-time seasonal predictions for the period 2020-2021, 2021-2022, and **2022-2023**, and all of which produced promising results

Climate Prediction Center Outlook

CPC calls for below-normal rainfall over Florida

- CLIFF suggests above normal over south Florida and near normal forecast for rainfall across other regions
- The first half of the winter season will likely be slightly wetter than the second half

Conclusion

Source: https://www.cpc.ncep.noaa.gov/

Verification

Figure: The cumulative rainfall (in mm) over a) SFWMD, b) SWFWMD, c) SRWMD, d) SJRWMD, and d) NWFWMD from 1 November 2022 to 28 February 2023 of the following year for the ensemble mean (red line) and the individual ensemble members (shaded) of CLIFF. The solid blue line is the corresponding model climatological cumulative rainfall for the season, and the black line is the observed climatology. The solid green line is observation for 2022-2023. The spatial map is Nov-Feb rainfall anomaly for this 2022-2023.

• Despite its wet bias, CLIFF demonstrated reliability in forecasting winter seasonal precipitation anomalies over Florida

Results

Conclusion

11

Verification

 (\rightarrow)

Methodology

• Winter seasonal rainfall anomalies in Florida have a strong influence on ENSO teleconnections

	CF	C Websi	ite			Forecast for WMDs based on CLIFF MME					8	
Year	SON	OND	NDJ	Year	CPC	PRM	TMP	NFWMD	SWFWMD	SFWMD	SRWMD	SJRWMD
2001	-0.3	-0.3	-0.3	2001	BN	NN	BN	NN	BN	NN	BN	BN
2002	1.2	1.3	1.1	2002	AN	AN	AN	AN	AN	NN	AN	AN
2003	0.3	0.4	0.4	2003	BN	NN	NN	NN	NN	NN	NN	NN
2004	0.7	0.7	0.7	2004	NN	NN	NN	NN	NN	NN	NN	NN
2005	-0.3	-0.6	-0.8	2005	NN	BN	BN	BN	BN	BN	BN	BN
2006	0.8	0.9	0.9	2006	AN	NN	NN	BN	NN	NN	NN	NN
2007	-1.3	-1.5	-1.6	2007	BN	BN	BN	BN	BN	NN	BN	BN
2008	-0.4	-0.6	-0.7	2008	NN	BN	NN	AN	NN	BN	AN	NN
2009	1	1.4	1.6	2009	AN	AN	AN	AN	AN	AN	AN	AN
2010	-1.6	-1.6	-1.6	2010	BN	NN	NN	BN	NN	NN	NN	NN
2011	-1	-1.1	-1	2011	BN	NN	NN	NN	BN	BN	BN	BN
2012	0.3	0.1	-0.2	2012	NN	NN	NN	NN	NN	BN	NN	NN
2013	-0.2	-0.2	-0.3	2013	BN	NN	NN	NN	NN	NN	NN	NN
2014	0.5	0.6	0.7	2014	AN	NN	NN	NN	NN	NN	NN	NN
2015	2.4	2.6	2.6	2015	AN	AN	AN	AN	AN	AN	AN	AN
2016	-0.7	-0.7	-0.6	2016	BN	BN	BN	NN	NN	BN	NN	BN
2017	-0.7	-0.8	-1	2017	BN	BN	BN	BN	BN	BN	BN	BN
2018	0.8	0.9	0.8	2018	AN	AN	AN	AN	AN	AN	AN	AN
2019	0.3	0.5	0.5	2019	NN	NN	NN	NN	NN	NN	NN	NN
2020	-1.2	-1.3	-1.2	2020	BN	AN	AN	AN	AN	AN	AN	AN
2021	-0.8	-1	-1	2021	BN	BN	BN	BN	BN	AN	BN	NN
2022	-1	-0.9	-0.8	2022	BN	AN	AN	NN	AN	AN	NN	AN
NN - Normal AN - Above Normal BN - Below Norma						Normal						

- PRM -> 14 / 22
- TMP -> 12 / 22
- NWFWMD -> 9 / 22
- SWFWMD -> 12 / 22
- SFWMD -> 12 / 22
- SRWMD -> 14 / 22
- SJRWMD -> 12 / 22

*Years, when CLIFF verifies with CPC Seasonal prediction outlook, are marked in bold

Introduction

Results

12

El Niño Years

	CPC Website					
Year	SON	OND	NDJ			
2002	1.2	1.3	1.1			
2004	0.7	0.7	0.7			
2006	0.8	0.9	0.9			
2009	1	1.4	1.6			
2014	0.5	0.6	0.7			
2015	2.4	2.6	2.6			
2018	0.8	0.9	0.8			

	Forecast for WMDs based on CLIFF MME							
Year	CPC	PRM	TMP	NEWMD	SWEWMD	SEWMD	SRWMD	SJRWMD
2002	AN	AN	AN	AN	AN	NN	AN	AN
2004	NN	NN	NN	NN	NN	NN	NN	NN
2006	AN	NN	NN	BN	NN	NN	NN	NN
2009	AN	AN	AN	AN	AN	AN	AN	AN
2014	AN	NN	NN	NN	NN	NN	NN	NN
2015	AN	AN	AN	AN	AN	AN	AN	AN
2018	AN	AN	AN	AN	AN	AN	AN	AN

 CLIFF accurately predicts homogenous seasonal rainfall anomalies during El Niño years

La Niña Years

Introduction

2005	CPC Website							
Year	SON	OND	NDJ					
2005	-0.3	-0.6	-0.8					
2007	-1.3	-1.5	-1.6					
2008	-0.4	-0.6	-0.7					
2010	-1.6	-1.6	-1.6					
2011	-1	-1.1	-1					
2016	-0.7	-0.7	-0.6					
2017	-0.7	-0.8	-1					
2020	-1.2	-1.3	-1.2					
2021	-0.8	-1	-1					

			Forecast for WMDs based on CLIFF MME							
Year	CPC	PRM	TMP	NFWMD	SWFWMD	SFWMD	SRWMD	SJRWMD		
2005	NN	BN	BN	BN	BN	BN	BN	BN		
2007	BN	BN	BN	BN	BN	NN	BN	BN		
2008	NN	BN	NN	AN	NN	BN	AN	NN		
2010	BN	NN	NN	BN	NN	NN	NN	NN		
2011	BN	NN	NN	NN	BN	BN	BN	BN		
2016	BN	BN	BN	NN	NN	BN	NN	BN		
2017	BN	BN	BN	BN	BN	BN	BN	BN		
2020	BN	AN	AN	AN	AN	AN	AN	AN		
2021	BN	BN	BN	BN	BN	AN	BN	NN		

Results

 Many cold (La Niña) years and ENSO neutral years, the seasonal rainfall anomalies are more heterogeneous

Verification

Methodology

CONCLUSION

Concluding Remarks

- The winter seasonal forecast from CLIFF at the WMD level is encouraging
- Customized seasonal forecasts like CLIFF show a clear advantage over CPC outlook
- El Niño years show consistent and pronounced ENSO teleconnections in Florida's winter rainfall anomalies, CLIFF's verification underscores the greater variability observed during La Niña and ENSO neutral years
- CLIFF's spatial resolution and 30-member ensemble spread to resolve internal variations contribute to its skill

Thank Organs?

ADDITIONAL RESULTS

Real-time 2021-22 winter Forecast

Figure: The cumulative rainfall (in mm) over a) SFWMD, b) SWFWMD, c) SRWMD, d) SJRWMD, and d) NWFWMD from 1 November 2021 to 28 February 2022 of the following year for the ensemble mean (red line) and the individual ensemble members (shaded) of CLIFF. The solid blue line is the corresponding model climatological cumulative rainfall for the season, and the black line is the observed climatology. The solid green line is the GPM observation for the 2021-2022.

Introduction

Methodology

Verification

Results

ADDITIONAL RESULTS

	CPC Website						
Year	SON	OND	NDJ				
2001	-0.3	-0.3	-0.3				
2002	1.2	1.3	1.1				
2003	0.3	0.4	0.4				
2004	0.7	0.7	0.7				
2005	-0.3	-0.6	-0.8				
2006	0.8	0.9	0.9				
2007	-1.3	-1.5	-1.6				
2008	-0.4	-0.6	-0.7				
2009	1	1.4	1.6				
2010	-1.6	-1.6	-1.6				
2011	-1	-1.1	-1				
2012	0.3	0.1	-0.2				
2013	-0.2	-0.2	-0.3				
2014	0.5	0.6	0.7				
2015	2.4	2.6	2.6				
2016	-0.7	-0.7	-0.6				
2017	-0.7	-0.8	-1				
2018	0.8	0.9	0.8				
2019	0.3	0.5	0.5				
2020	-1.2	-1.3	-1.2				
2021	-0.8	-1	-1				
2022	-1	-0.9	-0.8				

	CCSM4 SST (NMME)							
Year	SON	OND	NDJ					
2001	1.26	0.61	-0.23					
2002	1.56	1.49	1.27					
2003	-1.37	-0.44	0.57					
2004	0.14	0.25	0.45					
2005	-1.53	-1.18	-0.68					
2006	0.34	0.66	0.9					
2007	-0.94	-1.12	-1.44					
2008	-0.24	-0.1	-0.01					
2009	1.8	1.69	1.54					
2010	0.02	-0.62	-1.17					
2011	-0.42	-0.76	-1.1					
2012	-0.27	-0.09	0.09					
2013	0.13	0.18	0.37					
2014	-0.25	0.24	0.77					
2015	1.46	1.88	2.14					
2016	-0.76	-0.74	-0.77					
2017	-0.18	-0.5	-0.91					
2018	0.01	0.46	1					
2019	0.29	0.26	0.11					
2020	0.13	-0.84	-1.92					
2021	-1.17	-1.31	-1.37					

Introduction

Verification

Results