Understanding and predicting the U.S. hydroclimate from weather regimes and climate perspectives Grace Affram and Wei Zhang

Climate Adaptation Science Program

Department of Plants, Soils and Climate

Utah State University

March 28, 2024

From a paleoclimate perceptive, the Western U.S. entered a megadrought particularly in the Southwestern in the early 2000s

Williams et al. 2020, Science

The Megadrought Event

Significant decreasing/increasing trends in summertime precipitation are found across the Western/Eastern U.S.

Two Americas: one parched, one soaked

Five clusters or weather types (WT)/regimes are identified from daily 500-hPa geopotential

height anomalies by k-means cluster analysis

Weather regime is a potential predictor for droughts

50

0

100

Dry patterns (WT4) are not increasing, but wet patterns (WT3) are decreasing, responsible for the drying trend in the Western U.S.

Zhang et al.,2021

-50

-100

Characterizing the Drivers of the Western U.S. Droughts

Affram et al., 2023

Water Balance Equation:

Change in soil moisture (ΔS) = Precipitation (P) - Evapotranspiration (ET)_{Temperature} - Runoff (R)

High temperatures exert weaker impacts on soil moisture deficit

Method:

- CTRL Met forcings across the Western U.S. in 2021
- PRCLM Substituted precipitation in CTRL with its climatology (1981-2010)
- T2MCLM Same as above but with temperature climatology

Affram et al., 2023

The Pacific Meridional Mode (PMM) Precipitation Relationship

PMM exhibits a significant association with the dry-West & wet-East summertime precipitation pattern

Hypothesis: PMM could affect precipitation variability in the CONUS by teleconnections

PMM is the leading mode of a fully coupled ocean and atmosphere variability in the subtropical Eastern Pacific. The PMM Index is defined by applying Maximum Covariance Analysis (MCA) to tropical Pacific SST & 10m winds.

PMM-related SST
anomalies can weaken
trade winds & reduce
evaporation, thereby
expanding warm water
towards the equator &
potentially causing ENSO

Chiang and Vimont (2004)

Method: Years with annual anomalies greater/less than 1STD of the PMM index were deemed positive/negative phases of the PMM with the removal of strong ENSO years.

Positive PMM reduces precipitation in the West (r=-0.31) & increases precipitation in the East (r=0.47).

PMM-related large scale circulation patterns are consistent with precipitation changes, with wave trains propagating from the subtropical Pacific to the U.S.

Large-scale circulations reproduced the wave trains in observations thus consistent with less/more precipitation in Western/Eastern U.S. during the Positive PMM phase

Multi-model average of 28 CMIP6 AMIP models - First realization only

Summary / Conclusions

- The decreasing trend in the Western U.S. precipitation was mainly due to fewer trough patterns.
- The 2021 western U.S. drought was mainly driven by precipitation deficit with increased temperatures acting as a secondary driver.
- The positive PMM phase leads to excessive precipitation across the Eastern U.S., with diminished precipitation over the Western U.S.; the opposite is true for the negative PMM phase.
- CMIP6-AMIP experiments reproduced the associated large-scale circulation patterns in the observations consistent with less/more precipitation in Western/Eastern U.S. during the PMM phases.

Main References

- Affram, G., Zhang, W., Hipps, L., & Ratterman, C. (2023). Characterizing the development and drivers of 2021 Western US droug Environmental Research Letters, 18(4), 044040
- 2. Affram, G., Zhang, W., Ratterman, C., ... Gillies R. (2024). Strong Modulation of the Pacific Meridional Mode on the Dipole Patt the CONUS Summertime Precipitation (to be submitted)
- 3. Zhang, W., Hari, V., S-Y Wang, S., LaPlante, M. D., Garfin, G., Affram, G., & Kumar, R. (2022). Fewer troughs, not more ridges, have led to a drying trend in the Western United States. Geophysical Research Letters, 49(1), e2021GL097089
- 4. Williams, A. P., Cook, E. R., Smerdon, J. E., Cook, B. I., Abatzoglou, J. T., Bolles, K., ... & Livneh, B. (2020). Large contribution from anthropogenic warming to an emerging North American megadrought. *Science*, 368(6488), 314-318

Thank You!

Questions?

Please send your questions/comments to; <u>g.affram@usu.edu</u> or <u>w.zhang@usu.edu</u> End of slide show

8

2

0 -2

-6

-8

Evapo-transpiration [mm]

ACCESS-CM2 | R = 0.003

GISS-E2-1-G | R = 0.351

NESM3 | R = -0.445

KACE-1-0-G | R = 0.081

MIROC6 | R = 0.087

NorCPM1 | R = 0.357