Updating Intensity-Duration-Frequency (IDF) Curves for Sub-Daily Precipitation Events under CMIP6 Climate Change Scenarios: The Case of Pensacola and Perdido Bays Watersheds

Presented By: Samiul Kaiser

Co-Authored By: Leila Rahimi Ebrahim Ahmadisharaf

FAMU-FSU College of Engineering

Background

Image Source: https://sitn.hms.harvard.edu/flash/2022/climate-change-is-happening-in-our-own-backyards/

Intensity-Duration-Frequency (IDF) Curves

Image Source: https://www.researchgate.net/publication/228834807_Synthesis_of_Storm_Drainage_Design

Why Updating IDF Curves?

- Climate change: Precipitation events
- Operation rules of regulating hydraulic infrastructure
- Flood mitigation strategies
- Climate change adaptation

- To derive historical IDF curves for sub-daily precipitation.
- To bias correct global climate models (GCMs): High quantiles.
- To derive future precipitation stime series at sub-daily timescale.
- To derive future IDF curves.

Pensacola and Perdido Bays Watersheds

6

- Contains 2 HUC8 watersheds.
- Susceptible to heavy floods and sea level rise.
- Experienced at least 4 category Hurricanes within last 20 years (lan, Michael, Katrina and Ivan).

Data Collection and Processing

- Hourly data collected from NOAA NCEI (2007 - 2022).
- 9 weather stations.
- Different durations from hourly to 3 days (1, 2, 3, 6, 12, 18, 24, 48 and 72 hours).
- Annual maximum precipitation.

Fitting Probability Distributions

- Generalized Extreme Value (GEV) distribution with a Maximum Likelihood (MLE) parameter estimation
- IDF curves derived based on the quantiles of different durations and return periods

Methodological Flow Chart

Global Climate Model (GCM)

- Community Earth System Model 2 (CESM2) developed by NCAR is selected.
- GCM selected containing daily precipitation.
- Climate scenario SSP585 of the Coupled Model Intercomparison Project Phase 6 (CMIP6) is considered.

NCAR Community Earth System Model

Bias correction of GCM Outputs

- Standard Empirical Quantile Mapping (EQM) and EQM with a linear correction for upper quantiles (EQM-LIN)
- Bias corrected model outputs for future projection

Quantiles

Temporal Disaggregation

- Bias corrected daily precipitation were disaggregated into hourly data by continuous deterministic approach using NetSTORM.
- Dataset for different durations developed from hourly dataset.

12

IDF Curves for Historical Precipitation (2007-2022)

Return Period (yrs)

	2
	5
	10
—	20
	50
	100
	200
	500
	1000

Bias Correction Performance of EQM and EQM-LIN on Annual Scale

Bias Correction Performance by Month: EQM

Bias Correction Performance by Month: EQM-LIN

IDF Curves for Near Future (2023 – 2038)

38)					
		Retu	urn Per	iod (yea	rs)
			2		
			5		
			10		
			20		
			50		
			100		
		_	200		
		—	500		
			1000		
	-				

IDF Curves for Mid Future (2039-2054)

54)		
	Retu	urn Period (years)
		2
		5
		10
		20
		50
		100
	—	200
		500
		1000
	_	

IDF Curves for Distant Future (2055-2070)

Heatmap of Precipitation Intensities – Near Future (2023–2038)

Heatmap of Precipitation Intensities – Mid Future (2039–2054)

Heatmap of Precipitation Intensities – Distant Future (2055–2070)

Key Findings

- EQM-LIN outperformed EQM for bias-correcting the outliers.
- Increasing intensities in the future.
- Rate of change in far future is the highest followed by mid and near future. 25
- Increasing rate of intensities in higher duration precipitations. \bullet
- Rate of change has is increasing with the higher return periods.

Future Works

- Application of other climate scenarios, temporal disaggregation methods and probability distributions (i.e. General Pareto).
- Peak-Over-Threshold (POT) method and Generalized Maximum Likelihood Estimation (GMLE) for distribution fitting.
- Application of different GCM and RCMs and comparison between their performances.

26

Acknowledgements

PENSACOLA & PERDIDO BAYS ESTUARY PROGRAM

THANK YOU

QUESTIONS?

skaiser@eng.famu.fsu.edu eahmadisharaf@eng.famu.fsu.edu