Risk Communication of Urban Flood through Augmented Reality

ZhiQiang Chen Associate Professor, Civil Engineering University of Missouri – Kansas City Email: <u>chenzhiq@umystem.edu</u>

Team members: Molan Zhang¹, Chengye Li¹, Marie Tweedie¹ Jacob Marszalek¹, ZhiQiang Chen¹, James Walton²

¹Univeristy of Missouri Kansas City ²KC Water Services, Kansas City, MO

> 20th Annual Climate Prediction Applications Science Workshop (CPASW) May 9-11, 2023 Asheville, North Carolina

Outline

- Background:
 - 2017 Kansas City Flood and Necessity of Public Flood Risk Communication
- Risk communication through technologies
 - Why AR technology?
- Technical Implementation
- Workshop and field study (video demo).
- Conclusion remarks and future work.

2017 Indian Creek Flood, Kansas City, MO

- Flooding along 103rd Street in Kansas City, MO, in 2017
- Emergency rescue of people from the roof of a commercial building.
- KC-MO purchased and demolished several business buildings to prevent future liabilities.

Significance of Risk Communication

- RC provides adequate information about an impending hazard, its potential risks, and potential mitigation steps. (Gladwin et al. 2009, Krimsky 2007).
 - Aid communities in taking preparatory actions to reduce the adverse impacts of the event.
- RC as a preparedness measure to promote community resilience (NRC 2012, UN/ISDR 2004).
 - It allows for the sharing of knowledge/information/lessons learned among stakeholders

Professional Understanding vs Public Understanding

- Risk = Loss x Probability (Hazard x Vulnerability)
- Through minimal education, the public may understand a 'small-probability' event, i.e., a 100-year flood.
- However, what is the difference between the impact of 100- and 50-year floods?

Engaging the public in understanding flood hazards and risk remains a great challenge.

Risk Communication Technologies

- VR/AR technologies have been increasingly used in recent years for disaster & hazard risk communication. [Kundu et al 2017; Mol et al. 2022; Khanal et al. 2021].
- Main advantages:
 - Virtual; gaming-engine based simulation of disaster effects
 - Immersive through augmented reality

- The Weather Channel has pioneered and widely adopted VR technologies.
- NOT AR!

AR adds digital information to a user's real-world environment, while VR completely replaces a user's realworld environment with a simulated one

Technology Implementation

Head-mounted AR goggles?

- ✓ Not well suitable for outside AR=
- ✓ 3D sensing and visual SLAM are still problematic
- High-cost and not readily accessible for the public
- $\checkmark\,$ Powerful for research development

- Mobile smart-app based (Pokémon Go like AR)?
 - \checkmark Ready for outside application
 - ✓ Mature development kits
 - \checkmark Low-cost and accessible to the

public

Technology Components

Software Framework and Workflow

Technology Highlights

- Truly immersive physical scenes, virtual scenes of floods, and landmarks are frame-by-frame updated as a user walks.
- QR code based public AR app access and scalable to any location

Two AR modes:

- 2D flood hazard maps with dynamic display of water depth
- 3D parametric flood effects at designated flood frequencies.

Workshop Assessment

Learning outcomes assessed through social survey studies.

25 years 50 years 75 years 100 years 2017 back Add vitural models 6

HEC-Ras-1D water depth: 4.372658 ft.

Add vitural models

Youtube demo link:

https://www.youtube.com/watch?v=d9KFQyFL3SM &ab_channel=ImagingUmkc

Future Collaborative Effort:

- Climate change and regional downscaling
- Physics-based Urban Flood Digital-Twinning,
- AR-enabled Decision-making and Risk Communication
- Real-time flood hazard, vulnerability, and loss/risk modeling in a cloud-based computing infrastructure to enable real-time on-demand services.
- ✓ Advanced AI-enabled physical scene understanding and virtual effects generation
- ✓ Interactive and real-time data collection and crowdsourcing at the AR front ends
- ✓ On-demand AR-based flood risk communication at any location of interest

Baseline modeling

Field data collection

Mapping and Analytics Immersive field AR

Thank you!

Acknowledgment

 KC Water and FEMA funding is greatly appreciated for this pilot project.

Contact: ZhiQiang Chen Chenzhiq@umsystem.edu