NOAA Climate Prediction Center Experimental Water Year Outlook

Emerson LaJoie

Meteorologist at CPC

Emerson.LaJoie@noaa.gov

CPASW

May 23-26 2022

Contributors: Matt Rosencrans, David DeWitt,
Arun Kumar, Wanqiu Wang, Dan Collins,
Pingping Xie, Greg Jennrich, Mike Charles

Why a Water Year Outlook?

- Filling the need for precipitation forecasts at time scales beyond seasonal, in a format/time-frame that is informative and relevant to western water managers.
- Collaborate with water managers to explore different sources of information and useful methods for correction.
 - Could be updated multiple times throughout the water year (monthly).
 - Combine with other forecast methods to optimize skill.
- First step is to assess the viability of such an outlook using the North American Multi-Model Ensemble (NMME) which delivers up to 6-month leads of realtime precipitation and temperature forecasts each month (common period).
 - NMME also has a robust hindcast for sensitivity testing.

Making the Water Year Outlook

- Defining the Water Year: Water supply forecast information for the Western U.S. is often conveyed on a
 "water year" basis, with the water year starting on Oct 1. CPC is working on three WYOs:
 - 6-month outlook initializing in October and running thru March → ONDJFM
 - 5-month outlook initializing in the following month, November, and running thru March \rightarrow NDJFM
 - 4-month outlook initializing in December and running thru March → DJFM
- Skill assessment of the NMME's performance for these outlooks in a hindcast setting: OND 1982 DJF 2020
 - NMME:

•	CFSv2	24 members

 GEM_NEMO 	10 members
------------------------------	------------

CanCM4i
 10 members

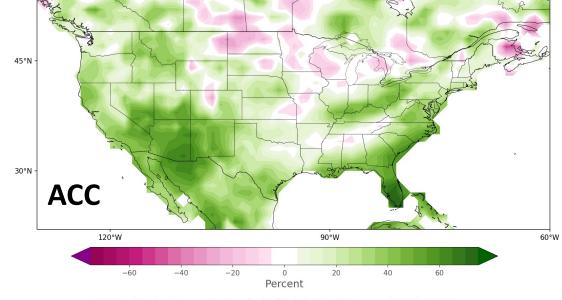
• GFDL FLOR 24 members

NASA_GEOS5v2 4 members

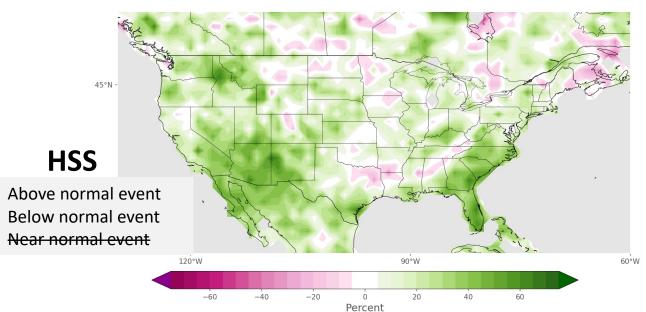
NCAR_CCSM4 10 members

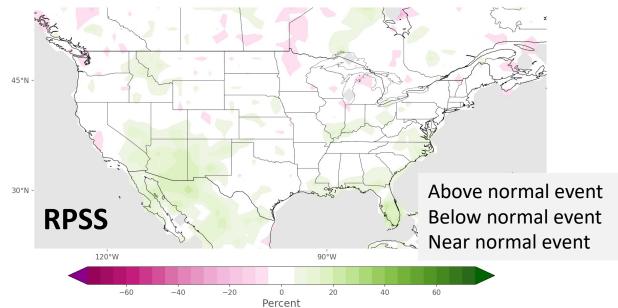
- Verification dataset: CPC's official precipitation dataset, but expanded, not publicly available
 - Hybrid Sat interpolation over the ocean + Gauge over land, to increase coverage off the coast

Making the Water Year Outlook


- Skill assessment of the ONDJFM NMME's WYO in the common hindcast period 1982-2020
 - All Years
 - Conditioned on ENSO years as defined by an ongoing measure of Tropical SSTs \rightarrow Ocean Nino Index (ONI) (threshold is + or 0.5 degrees)
 - For example, for DJF in 1992, ONI value of $+1.7 \rightarrow$ El Nino year so that year is selected for the ONDJFM outlook initializing in 1992. Repeat.
 - La Nina years (negative ONI years)
 - ACC: Anomaly Correlation Coefficient
 - percent the observed standard deviation of the anomalies is captured by the models
 - HSS: Heidke Skill Score 2-category probabilistic skill score
 - the percent improvement/degradation over using climatology of using the NMME
 - RPSS: Rank Probability Skill Score 3-category probabilistic skill score
 - how skillfully the models capture the observed climatological distribution

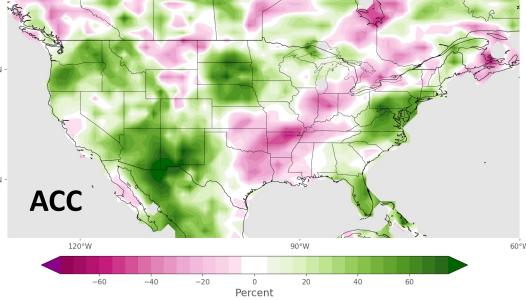
WYO ONDJFM Skill Assessment (Precipitation)


- All Years from 1982-2020
 - ACC: percent the observed standard deviation of the anomalies is captured by the NMME
 - **HSS:** 2-category probabilistic the percent improvement/degradation of using the NMME vs climatology

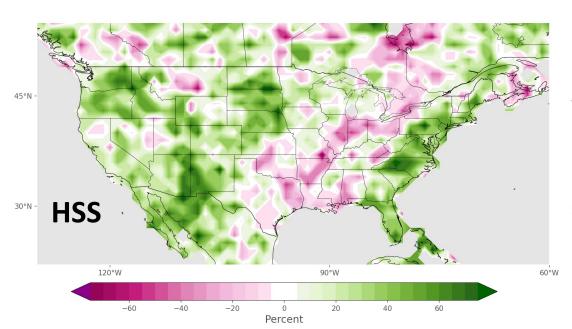

NMME Water Year Outlook Skill: HSS All Years 1982-2020

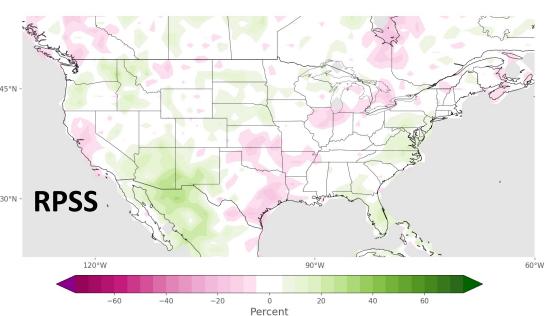
 RPSS: 3-category probabilistic outlook – how skillfully the NMME captures the observed climatological distribution

NMME Water Year Outlook Skill: RPSS All Years 1982-2020

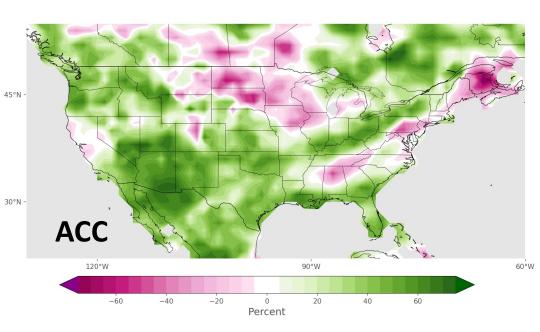


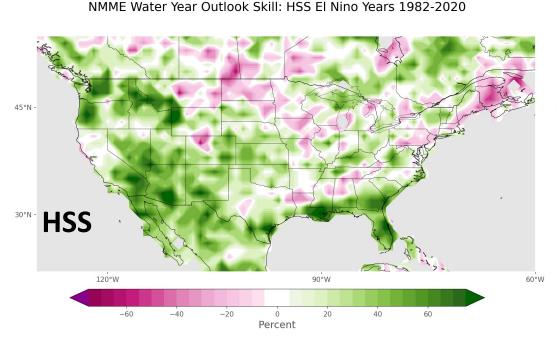
WYO ONDJFM Skill Assessment (Precipitation)

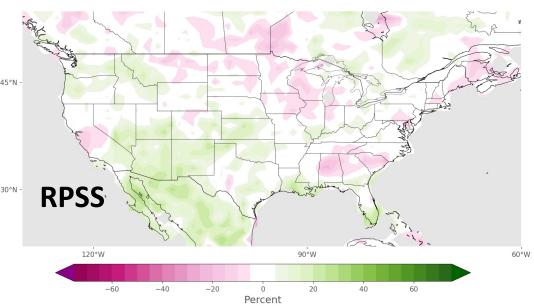

- La Nina years within 1982-2020 -- about 12
 - ACC: percent the observed standard deviation of the anomalies is captured by the NMME
 - HSS: 2-category probabilistic the percent improvement/degradation of using the NMME vs climatology


NMME Water Year Outlook Skill: HSS La Nina Years 1982-2020

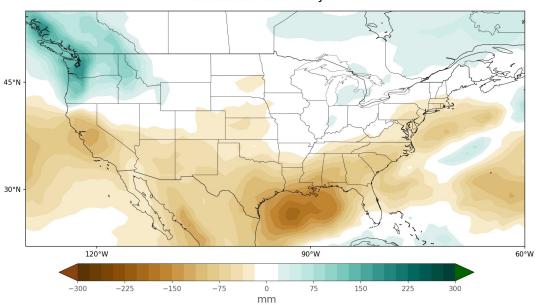
 RPSS: 3-category probabilistic outlook – how skillfully the NMME captures the observed climatological distribution

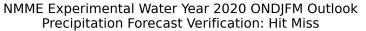

NMME Water Year Outlook Skill: RPSS La Nina Years 1982-2020

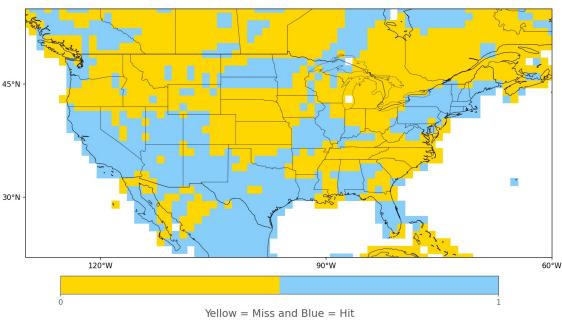



WYO ONDJFM Skill Assessment (Precipitation)

- El Nino years within 1982-2020 -- about 12
 - ACC: percent the observed standard deviation of the anomalies is captured by the NMME
 - HSS: 2-category probabilistic the percent improvement/degradation of using the NMME vs climatology
 - RPSS: 3-category probabilistic outlook how skillfully the NMME captures the observed climatological distribution

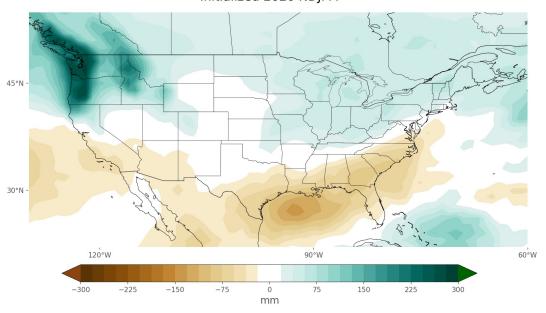

NMME Water Year Outlook Skill: RPSS El Nino Years 1982-2020



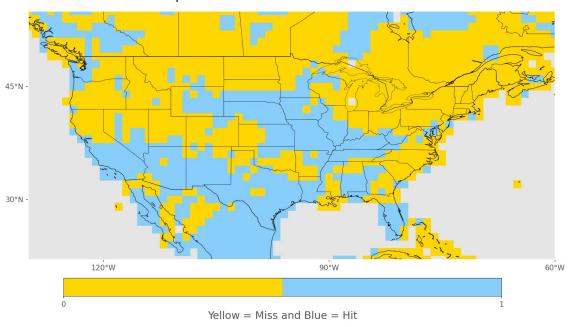

Reviewing the 6-mth WYO October 2020 – March 2021

NMME Experimental Water Year Outlook: Anomaly Precipitation Forecast Initialized 2020 ONDJFM

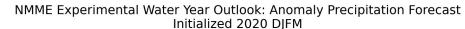
WYO → ONDJFM

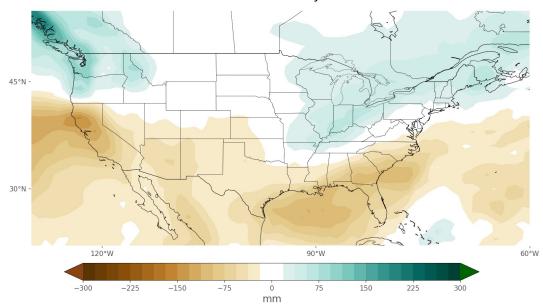


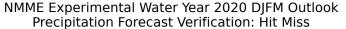
"Hit Miss" verification: Captures the skill of the direction of the forecast anomalies relative to the observed anomaly. Hit > NMME forecasted a positive (negative) anomaly and a positive (negative) anomaly was observed.

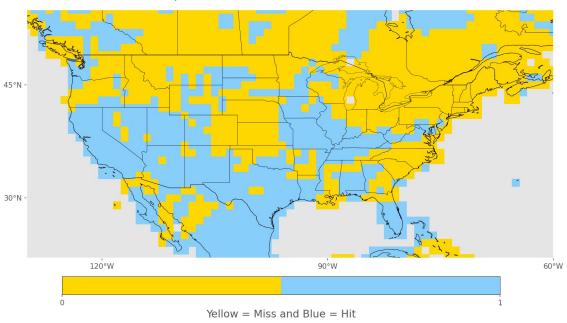

Reviewing the 5-mth WYO November 2020 – March 2021

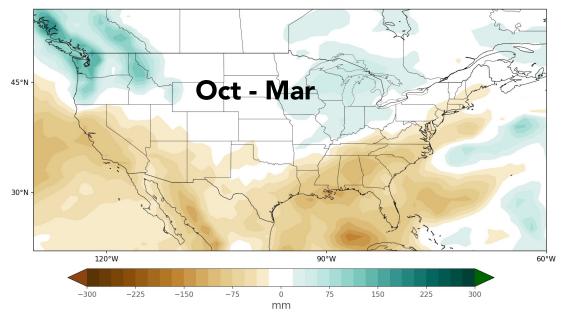
NMME Experimental Water Year Outlook: Anomaly Precipitation Forecast Initialized 2020 NDIFM

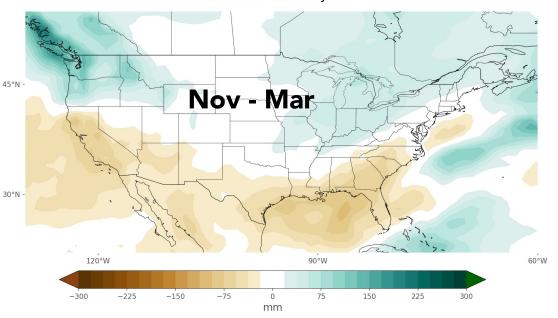

WYO → NDJFM


NMME Experimental Water Year 2020 NDJFM Outlook Precipitation Forecast Verification: Hit Miss


"Hit Miss" verification: Captures the skill of the direction of the forecast anomalies relative to the observed anomaly. Hit > NMME forecasted a positive (negative) anomaly and a positive (negative) anomaly was observed.

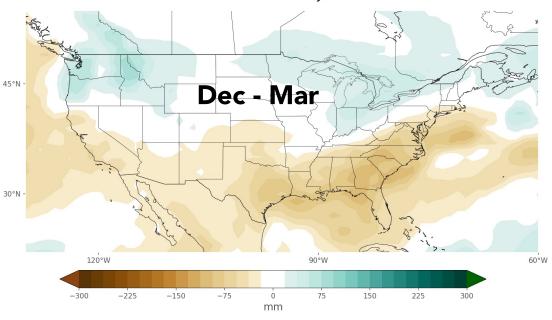

Reviewing the 4-mth WYO December 2020 – March 2021


WYO → DJFM



"Hit Miss" verification: Captures the skill of the direction of the forecast anomalies relative to the observed anomaly. Hit > NMME forecasted a positive (negative) anomaly and a positive (negative) anomaly was observed.

NMME Experimental Water Year Outlook: Anomaly Precipitation Forecast Initialized 2021 ONDJFM



NMME Experimental Water Year Outlook: Anomaly Precipitation Forecast Initialized 2021 NDJFM

Experimental Water Year Outlooks: 2021 - 2022

NMME Experimental Water Year Outlook: Anomaly Precipitation Forecast Initialized 2021 DJFM

Next steps...

- Skill of the 5- and 4-mth outlooks
- NMME Bias-correction/calibration
 - Exploring up/down scaling
 - Calibration typically brings the model inline with climatology if climatology is not as useful
 in the face of anthropogenic forcing/other trends, what other signals or model parameters
 can be developed to better capture what's happening in localized areas?
- Explore sensitivity in criteria of ONI years add lags, choose different months, other measures of ENSO, etc.
- Explore hybrid methods statistical + dynamical tools
- Engagement with the hydrology and water resources community to fine tune product(s)
 - Long lead temperature outlooks
 - Peak Melt
 - Dry Season Outlook

National Weather Service

Climate Prediction Center

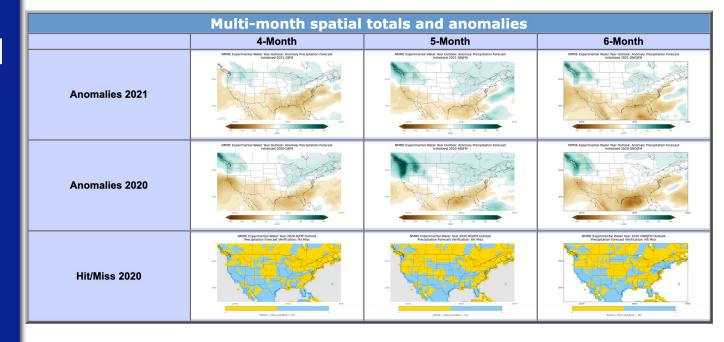
HOME > NMME Forecasts of Monthly Climate Anomalies > 3-Month Mean Spatial Anomalies

home Site Map Organization Search News

Search the CPC

Go

About Us


Our Mission Who We Are

Contact Us **CPC Information CPC Web Team**

NMME Forecasts of Precipitation

← Back to the NMME Main Page

NOAA/ National Weather Service NOAA Center for Weather and Climate Prediction Climate Prediction Center 5830 University Research Court College Park, Maryland 20740 Page Author: Climate Prediction Center Internet Team Page last modified: March 15, 2012

Disclaimer Information Quality Credits Glossary

Privacy Policy Freedom of Information Act (FOIA) About Us Career Opportunities