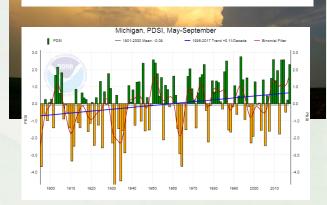
Department of Geography, Environment, and Spatial Sciences MICHIGAN STATE UNIVERSITY

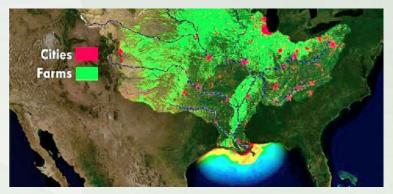
B.J. Baule Climate Prediction Applications Science Workshop (CPASW) 5/25/2022


Changes in Precipitation Indicators Across the Midwestern and Great Lakes Regions of the **United States:** Implications for Corn-Soy Production from Field to Region

What's Changing in Our Climate?

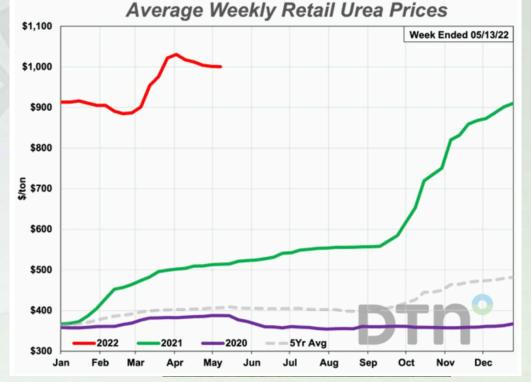
- Increasing annual precipitation
- Shifting seasonality of precipitation
- Increasing intensity of precipitation events
- Increasing air temperatures
- Increasing minimum temperatures more than maximum temperatures
- Longer growing seasons
- Increasing humidity (specific/absolute)

If we consider our end-user to be producers on working lands, the impacts of increasing and more variable precipitation outweighs impacts from increasing temperature on shortertimescales (i.e. weeks, months, years) as opposed to decades.



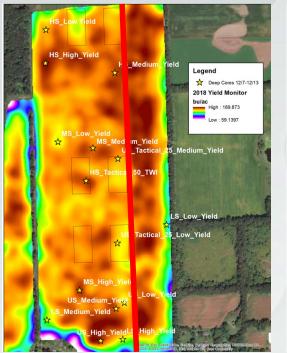
Precipitation/Nitrogen

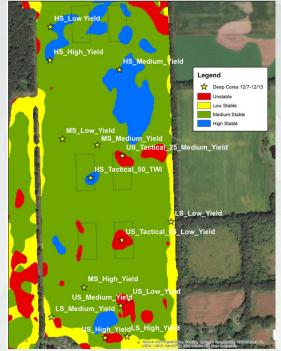
- Changes in precipitation amount and variability can have direct impacts on nitrogen cycling (Kalkhoff et al. 2016)
- Depending on crop requirements, application rate, & farm size, nitrogen losses can represent a significant financial loss to producers and a major environmental pollutant (Robertson et al. 2013)

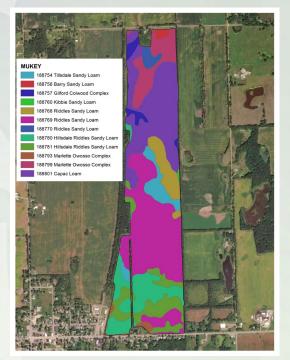


Source: Purdue University Extension

Nitrogen Efficiency


- Efficiency of nitrogen fertilizer applied has historically been poor.
 - ~50-75% not utilized
- Application of nitrogen in surplus of crop demand, results in lost nitrogen to the environment and lost money for the producer
- Nitrogen fertilization traditionally viewed as cheap insurance (Tei et al.




Source: DTN/Progressive Farmer, May 18 2022

🐔 MICHIGAN STATE UNIVERSITY

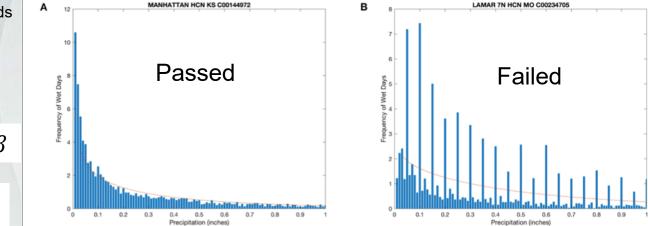
Background

2018 Corn Yield

Yield Stability Zones

Soil Types

Trends in Quality Controlled Precipitation Indicators


- Examined precipitation records from United States Historical Climatology Network across 14 states from 1951-2019.
- Focus on a suite of Indicators (modified from ETCCDI) that capture the character of precipitation at a given location
- Implemented a three-tiered quality control procedure that goes beyond the provided QC examining for incidences of 1. Data Completeness, 2.
 Observer Bias, 3. Abrupt Change in Observing Practice.
- Annual/Seasonal: Non-parametric trend analysis of precipitation indicators (3 CI levels). Correlation with atmospheric moisture
 - parametric/non-parametric methods

Baule, W.J., J.A. Andresen, and J.A. Winkler, 2022: Trends in quality controlled precipitation indicators in the United States Midwest and Great Lakes Region. Frontiers in Water, **8**, 817342, doi:10.3389/frwa.2022.817342

Tests for Observer Bias

Under-reporting check MANHATTAN HCN KS C00144972 Α If ratio exceeds $R_L = \frac{C_{6-10}}{C_{1-5}},$ 0.60, station fails **Five/Tens Bias** icy of Wet Days Carried out for values divisible by 5 and 10 R = 100 * (P - O) $\gamma = \alpha \beta$ $\overline{R}_1 = \frac{\sum_{i=1}^{n_1} R_{1_i}}{n_1}; \ \overline{R}_5 = \frac{\sum_{i=1}^{n_5} R_5}{n_5}$ 0.1

Two-tailed t-test, alpha = 0.01, if different, station fails

FIGURE 2 Histograms from two example stations in the study region showing precipitation frequency (blue bars) over the period from 1951 to 2019 binned in 0.01 increments and a gamma distribution (red line) fit to the data following Daly et al. (2007). (A) Manhattan, KS HCN passes ($\rho \le 0.01$) the tests for underreporting of daily precipitation amounts <0.05 in. (1.26 mm) and for over-reporting of daily precipitation amounts (in inches) evenly divisible by 5 or 10 despite showing a small divisible by 10 bias. (B) Lamar 7N, MO HCN fails all three tests ($\rho \le 0.01$), showing a strong under reporting bias, a strong divisible by 5 bias, and a strong divisible by 10 bias.

Final Stations

- 317 stations met criteria for completeness
 - 90%, 1951-2019
- 114 passed observer bias checks
- Time series of annual and seasonal indicators were subject to additional check for breakpoints/discontinuities (Pettit Test).
 - If breakpoint detected, that time series is not considered

TABLE 2 | Number of stations exhibiting statistically significant trends (Mann Kendall, $p \le 0.05$ two-tailed, $p \le 0.10$ two-tailed, $p \le 0.20$, two-tailed) from 1951 to 2019 in the annual precipitation indicators.

Precipitation indicator	Total number of stations after breakpoint analysis	Number of stations with significant positive trends (p ≤ 0.05)	Number of stations with significant positive trends ($p \le 0.10$)	Number of stations with significant positive trends (p ≤ 0.20)	Number of stations with significant negative trends ($p \le 0.05$)	Number of stations with significant negative trends (p ≤ 0.10)	Number of stations with significant negative trends (p ≤ 0.20)
PROPTOT	100	47	75	79	1	1	1
R1.26mm	97	42	53	61	1	3	5
SDII	112	42	52	62	0	0	3
CWD	114	17	23	36	0	0	0
CDD	113	0	2	2	16	28	44
ww	105	27	44	51	5	7	9
DD	107	2	3	3	41	61	65
R10mm	104	42	60	72	0	1	1
R20mm	101	35	58	59	1	1	1
R95pTOT	104	38	62	63	0	0	0
R99pTOT	108	11	33	39	0	0	0
Rx1day	114	13	29	43	0	0	0
Rx5day	114	23	33	47	0	0	2

Indicators where more than 50% of stations analyzed showed a significant trend are shown in bold. See Table 1 for definition of the abbreviations for the precipitation indicators.

Annual Results

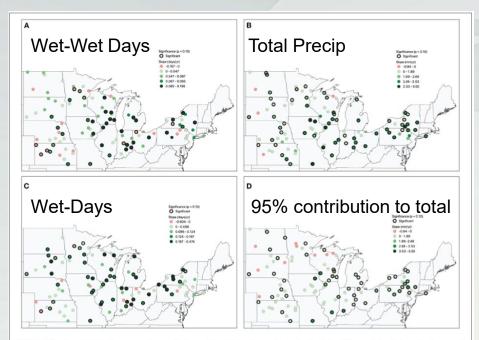


FIGURE 3 | Trends for 1951–2019 in representative annual indicators of precipitation characteristics at locations in the Midwest and Great Lakes region that passed the quality control checks described in the methods section: (A) annual counts of wet-wet day sequences (ANN WW; days; count year⁻¹; upper left), (B) annual total precipitation on wet days (PRCPTOT; mm year⁻¹; upper right), (C) number of days with precipitation ≥ 1.26 mm (R1.26mm; days year⁻¹; lower left), and (D) total precipitation on days when precipitation is ≥ 95th percentile (R95pTOT; mm year⁻¹; lower right).

- Annual precipitation has increased across the region in most indicators
- More variability in west and north when compared to east and south

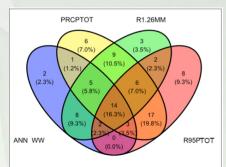


FIGURE 4 | Venn Diagram of the number of stations with significant positive trends for all possible combinations of four representative annual precipitation indicators: the probability of wet-wet days (WW), total annual precipitation (PROPTOT), the number of wet days (R1.26mm), total precipitation on days with precipitation \geq 95th percentile (R95pTOT). Percentages are relative to largest number of significant positive trends which was 86. Percentage of significant (\geq 0.10) positive trends falling in each category is shown in parentheses.

Seasonal Results

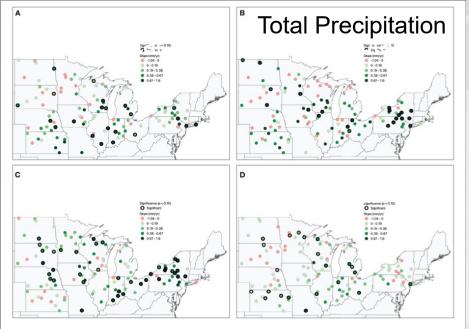
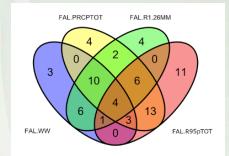
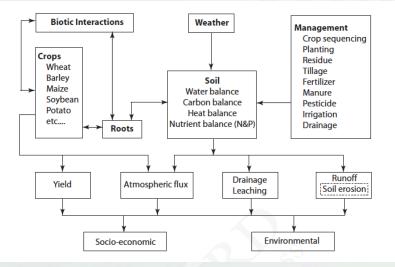



FIGURE 6 | Trends (mm year⁻¹) in the seasonal amount of total precipitation falling on days with precipitation \geq 95th percentile (R95pTOT) for (A) spring, (B) summer, (C) fall, and (D) winter.

Seasonal indicators showed fewer significance trends than their annual counterparts

- The season with the most significant trends was fall; the fewest in spring.
- Fewer breakpoints were detected in seasonal time series

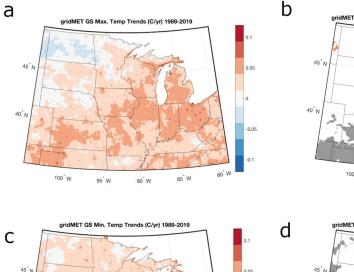

Seasonal Total Precipitation

Take Aways from Precipitation Indicators

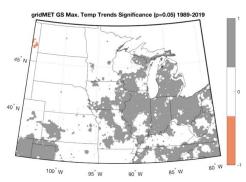
- Quality control procedures and methods implemented have a profound effect on the interpretation of trends.
 - i.e. Choose wisely and don't ignore light accumulation events
- Controlling for observer bias and change points in the data resulted in more spatially coherent patterns of statistical significance
 - Though not all indicators exhibited large positive/significant trends, the near absence of statistically significant negative trends is impressive.
 - Changes have occurred differently across space and time in the study region
 - More variation in the west, general wetting trend in the east

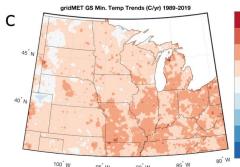
Process Based Crop Models

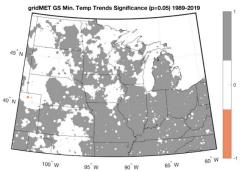
Components of the Systems Approach to Land Use Sustainability Model (SALUS)

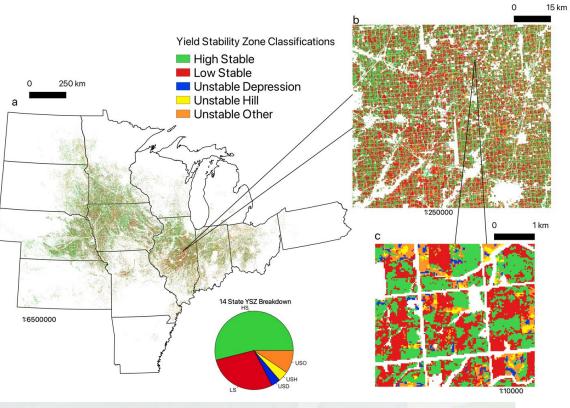


- Crop Models are a tool that can allow us to examine the linkages between components of the Soil-Plant-Atmosphere continuum
- Tie the different components together


Source: Basso and Ritchie 2015


Background Hydroclimatic Trends (1989-2019)


- gridMET (4-km)
- Precipitation and PET have generally increased
 - PET > PRCP
- GS Temperatures have increased
 - Exception ND/MN high temps.



-0.05

HS: Average NDVI always greater than field average, low temporal variation LS: Average NDVI always less than field average, low temporal variation US: Variable yields, year to year

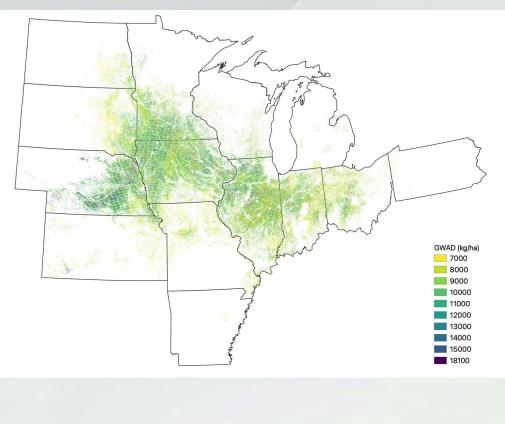
Yield Stability Zones and Study Area

- Stability zones by FSA common land unit (CLU)/NDVI data (Basso et al. 2019). 30-meter resolution
- Modifications to soil and plant density necessary for each zone.
- Simulated corn-soy rotation from 1989-2019, alternate years.
 - Soy crops unfertilized
 - Start on corn
- Historical Management Practices
- Three tillage scenarios
 - No-Till, Minimum Tillage, Deep Tillage
- Approx. 22 million unique combinations of field, soil, stability zones (30-meter).

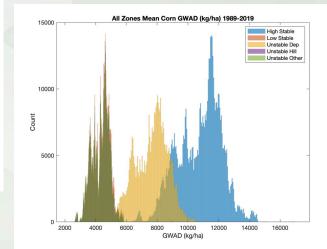
 $\overline{NDVI}_{i,j} = \frac{\sum_{1}^{n} NDVI_{i,j,k}}{n}$

Basso et al. 2019

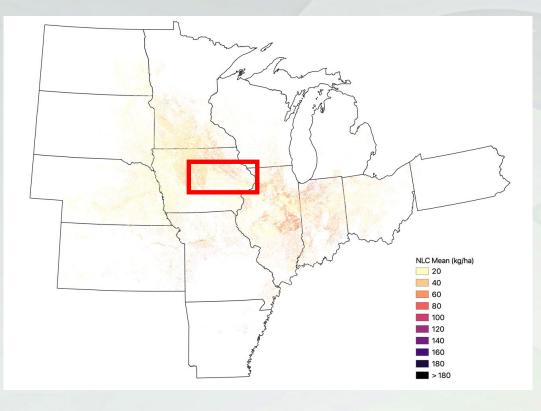
 $\overline{snNDVI}_{j,k} = \frac{\sum_{1}^{8} snNDVI_{i,j,k}}{8}$

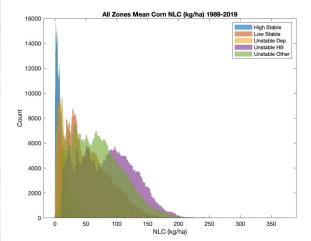

 $\mathit{rNDVI}_{i,j,k} = \frac{\mathit{NDVI}_{i,j,k} - \overline{\mathit{NDVI}}_{i,j}}{\overline{\mathit{NDVI}}_{i,j}}$

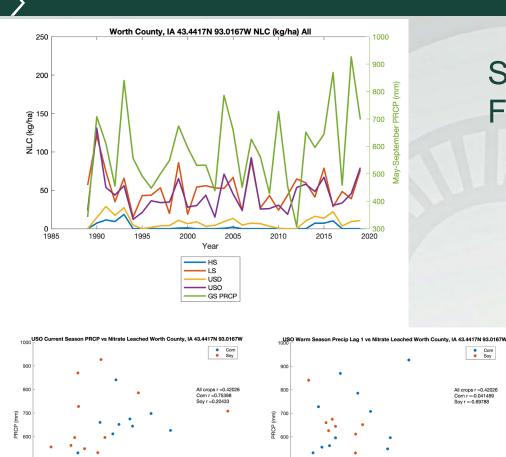
 $tnNDVI_{j,k} = \sqrt{\frac{1}{8}\sum_{1}^{\infty} (snNDVI_{i,j,k} - snNDVI_{j,k})^2}$


 $snNDVI_{i,j,k} = \begin{cases} High \ NDVI & if \ NDVI_{i,j,k} \ge \overline{NDVI}_{i,j} \\ Low \ NDVI & if \ NDVI_{i,j,k} < \overline{NDVI}_{i,j} \end{cases}$

 $Stability_{j,k} = \begin{cases} SH ~~if~ NDVI_{i,j,k} \geq \overline{NDVI}_{i,j}~and~tnNDVI_{j,k} < 0.15\\ SL ~~if~ NDVI_{i,j,k} \geq \overline{NDVI}_{i,j}~and~tnNDVI_{j,k} < 0.15\\ U ~~if~tnNDVI_{j,k} \geq 0.15 \end{cases}$


Yield Results


- High Stable/Unstable-Depression Zones are responsible for the majority of the yield.
- Low Stable, Unstable Hill & Other have similar yield response but different climatic sensitivities.



Leaching Results

- Due to lower yields, N-Uptake, and <u>uniform management.</u> The Low Stable, Unstable Hill, and Unstable Other are responsible for the majority of leaching.
- Due to more favorable soil conditions and plant health, the high yielding zones leach little.

400

NLC (kg/ha)

500

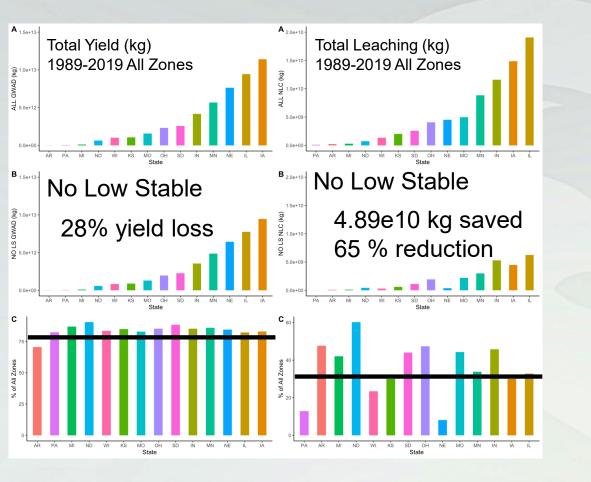
400

NLC (kg/ha)

Sub-Field Leaching-Single


FieldLeaching is directly tied to precipitation/water stress

- Crop and Management changes the result
- Corn years have highest leaching
 - Fertilization


Corn
Soy

- **Current Growing Season Precip**
- Soy years have less leaching
 - No Fertilization
 - Prior Growing Season Precip.
- Highest leaching potential
 - Soy: following a drought
 - Corn: Wet year following a drought
- Unstable Other zones have highest correlations with hydroclimatic variables

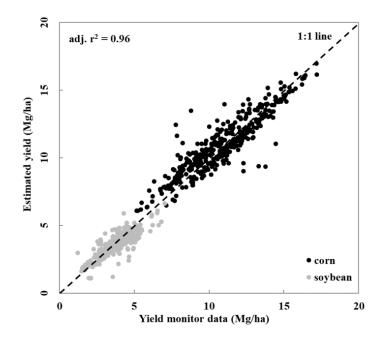
Water Stress Variability/SOM

					HS Mean	LS Mean			HS Mean N	LS Mean N
	SOM% 0-30cm	PRCP	PET	DIFF	Drought Stress	Drought	HS Mean NLC	LS Mean NLC	Plant	Plant
County	(%)	(mm)	(mm)	(mm)	(days)	Stress (days)	(kg/ha)	(kg/ha)	(kg/ha)	(kg/ha)
Worth	6.09	899	964	-65	2.91	11.69	4.28	8.57	284.30	170.29
Tama	2.96	920	1015	-95	6.63	14.45	7.87	9.32	237.50	170.67
Appanoose	2.28	978	1112	-134	7.57	14.81	8.28	9.21	225.22	165.33

- Highest yields were simulated in Iowa, Nebraska (irrigated), and Illinois.
- Highest leaching contributions were simulated in Illinois, Iowa, and Indiana
- Higher climatic sensitivities in Unstable Zone: in-season precision management could reduce leaching from these areas.
- Low stable zones don't respond as strongly to weather/climate
 - Eliminating Low Stable Zones
 - Reduces total yield by ~ 25% across region
 - Reduces leaching by 40% (ND) to 85% (PA) (rainfed)
 - 90% Reduction NE (irrigated)

Thank You!

- Questions?
- Contact:
 - baulewil@msu.edu



Department of Geography, Environment, and Spatial Sciences MICHIGAN STATE UNIVERSITY

Figure S1. Estimated yield using NDVI-stability class approach vs yield monitor data (right-hand bars).

