PREDICTING THE ONSET OF RAPID DROUGHT INTENSIFICATION EVENTS

Beth Hall (MRCC) - Presenter / MRCC Director Jonathan Weaver (MRCC) - Programmer Molly Woloszyn (NIDIS) - NIDIS Regional Coordinator

Inspiration

Flash droughts impact millions of Americans every year

- Hard to predict
- Worsen quickly (weeks not months)
- Can arise in non-drought conditions
- Can add to existing drought conditions
- Costly
- Crop and livestock loss
- Drinking water shortages

- Hydroelectric energy production

Purpose

Create a tool that can predict flash drought onset

- Use modern computational techniques
- Trained on prior events
- Easy to understand
- Helpful in decision making

Planning

What kind of model?

- Random forest classifier
- Computationally lightweight
- Easy to understand
- Good at classifying rare events (like flash droughts)

Planning

What the heck is a "Random Forest Classifier"?

- A series of decision trees
- Overall prediction based on how many trees "vote" for an outcome.

Planning

What the heck is a "Random Forest Classifier"?

- A series of decision trees
- Overall prediction based on how many trees "vote" for an outcome.

Planning

There's just one problem...

- There isn't one definition of a flash drought that everyone accepts.
- No shortage of ideas:
- Variables:
- Evaporation /

Evapotranspiration

- Soil moisture
- Precipitation
- Temperature
- US Drought Monitor
- Onset Rate:
- 1 week
- 2 weeks
- 30 days
- 8 weeks

Planning

We need one specific flash drought definition to be able to train the model.

- Need to train the model on examples of prior flash drought events.
- Need these events to have specific start and end dates and locations.
- Need to feel confident in the classification.

- Garbage in \rightarrow Garbage out

Planning

There's no perfect definition.

- Soil moisture
- In situ observations are sparse
- Location specific/sensitive
- Spatial interpolation not helpful
- Evapotranspiration, precipitation, temperature, etc.
- Led to spotty, inconsistent events
- Precise but complex and inflexible
- Drought Monitor
- Human intuition but also human fallibility
- Only updated once per week

Planning

Decided to use the US Drought Monitor

- Used the definition in Pendergrass et al. (2020)
- Produced results that agreed with extent and location of past flash drought events.
- Flash drought onset classified as:
- 2-category increase
- In 2 weeks or less
- Sustained for at least another 2 weeks

Planning

The Predictors

- We cared about conditions that caused the 2-category increase in the US Drought Monitor in ≤ 2 weeks.
- Decided to use environmental conditions over that same 2week period.
- The conditions that led to the 2 category increase.

Training and Testing

Building the Model

- Used North American Regional Reanalysis (NARR) data for environmental conditions.
- Gave the model millions of datapoints to learn from.
- Model trained on these data and "learned" what conditions were required for a flash drought to occur.

NARR $10-40 \mathrm{~cm}$ Underground Soil Temperature (C) 18UTC 18Sep2003

Training and Testing

Predictors Used:

- Latitude
- Longitude
- Day of the year
- Temperature
- Precipitation
- Dew point
- Relative humidity
- Mean Sea Level Pressure
- Air pressure
- Wind speed and direction

Accumulated Precipitation: Percent of Mean

Average Maximum Temp. (${ }^{\circ} \mathrm{F}$): Departure from Mean July 8, 2003 to July 22, 2003

Training and Testing

One important note...

- "Vote" threshold needed doesn't have to be 50\%...
- Can change this threshold to fine-tune the sensitivity of the model and increase accuracy.

Training and Testing

Preliminary Results

- Using cross validation on historical data:
- Best "vote" threshold was about 10\%
- Heidke Skill Score $=0.658$
- Probability of detection = 61.6\%
- False alarm rate $=24.1 \%$
- About 76\% of events exceeding this threshold were flash drought events.

Skill at Various Thresholds

Implementation

Now what?

- Time to implement the model into something useable on a daily basis.
- What forecast data to use?
- GFS
- Updated regularly
- Includes all the variables we trained with
- Forecast goes out at least 14 days
- Required since the model was trained to use 2 weeks of data for a prediction.

Implementation

The raw prediction output was difficult to interpret.

- Percent of trees in forest \neq Probability of flash drought
- A simple "yes" or "no" forecast isn't ideal.
- Would be better if we could show risk levels
- Low, Medium, High risk, etc.

Implementation

Looked to the testing results for guidance.

- Risk levels should be based on a risk probability.

Implementation

Risk Levels:

- Low:
- $\leq 10 \%$ risk
- Slight:
- > 10\% risk
- Moderate:
- > 25\% risk
- High:
- > 50\% risk
- Very High:

Risk Level	Probability of Detection	False Alarm Rate
Low	100%	100%
Slight	89.8%	92.3%
Moderate	82.9%	79.8%
High	71.1%	47.8%
Very High	58.7%	25.1%
Extreme	43.2%	10.5%

- > 75\% risk
- Extreme:
- > 90% risk

Working Prototype

Success!

- We have a finished tool! available.
- Updates every 6 hours
- Shortly after newest GFS run is

NIDIS

Working Prototype

A few things to note...

- The model uses GFS forecast data to make a prediction.
- Prediction only as good as the GFS's prediction
- If the 2-week GFS forecast changes, the prediction will change.
- Model was only trained for events in April - October
- Limited skill outside of this window

- Prediction is the likelihood of flash drought onset.
- Not predicting if a current flash drought event will persist

Next Steps

More testing is needed.

- All model performance testing was done on NARR reanalysis data.
- Yet to be seen how model handles GFS forecast data.
- Test other variables in model
- Drought indices
- Notification system
- Users can sign up to get alerts when their location is at risk of flash drought onset.

Next Steps

We need your help!

- We'd love to have you try the tool for yourself!
- Try it out over the next few months and let us know your thoughts.
- Ideas and suggestions
- Bugs and other issues
- Bad or suspicious forecasts

https://mrcc.purdue.edu/MWDEWS/flashdroughttool.html

