PREDICTING THE **ONSET OF RAPID** DROUGHT INTENSIFICATION **EVENTS**

Beth Hall (MRCC) – Presenter / MRCC Director Jonathan Weaver (MRCC) – Programmer Molly Woloszyn (NIDIS) – NIDIS Regional Coordinator

Inspiration

Flash droughts impact millions of Americans every year

- Hard to predict
 - Worsen quickly (weeks not months)
 - Can arise in non-drought conditions
 - Can add to existing drought conditions
- Costly
 - Crop and livestock loss
 - Drinking water shortages
 - Hydroelectric energy production

Purpose

Create a tool that can predict flash drought onset

- Use modern computational techniques
- Trained on prior events
- Easy to understand
- Helpful in decision making

What kind of model?

- Random forest classifier
 - Computationally lightweight
 - Easy to understand
 - Good at classifying rare events (like flash droughts)

What the heck is a "Random Forest Classifier"?

- A series of decision trees
- Overall prediction based on how many trees "vote" for an outcome.

What the heck is a "Random Forest Classifier"?

- A series of decision trees
- Overall prediction based on how many trees "vote" for an outcome.

There's just one problem...

- There isn't one definition of a flash drought that everyone accepts.
- No shortage of ideas:
 - Variables:
 - Evaporation / Evapotranspiration
 - Soil moisture
 - Precipitation
 - Temperature
 - US Drought Monitor

- Onset Rate:
 - 1 week
 - 2 weeks
 - 30 days
 - 8 weeks

We need *one* specific flash drought definition to be able to train the model.

- Need to train the model on examples of prior flash drought events.
- Need these events to have specific start and end dates and locations.
- Need to feel confident in the classification.
 - * Garbage in \rightarrow Garbage out

There's no perfect definition.

- Soil moisture
 - In situ observations are sparse
 - Location specific/sensitive
 - Spatial interpolation not helpful
- Evapotranspiration, precipitation, temperature, etc.
 - Led to spotty, inconsistent events
 - Precise but complex and inflexible
- Drought Monitor
 - Human intuition but also human fallibility
 - Only updated once per week

Decided to use the US Drought Monitor

- Used the definition in Pendergrass et al. (2020)
 - Produced results that agreed with extent and location of past flash drought events.
- Flash drought onset classified as:
 - 2-category increase
 - In 2 weeks or less
 - Sustained for at least another 2 weeks

The Predictors

- We cared about conditions that caused the 2-category increase in the US Drought Monitor in ≤2 weeks.
- Decided to use environmental conditions over that same 2week period.
 - The conditions that led to the 2category increase.

Building the Model

- Used North American Regional Reanalysis (NARR) data for environmental conditions.
- Gave the model millions of datapoints to learn from.
- Model trained on these data and "learned" what conditions were required for a flash drought to occur.

Predictors Used:

- Latitude
- Longitude
- Day of the year
- Temperature
- Precipitation
- Dew point
- Relative humidity
- Mean Sea Level Pressure
- Air pressure
- Wind speed and direction

2022

One important note...

- "Vote" threshold needed doesn't have to be 50%...
- Can change this threshold to fine-tune the sensitivity of the model and increase accuracy.

Preliminary Results

- Using cross validation on historical data:
 - Best "vote" threshold was about 10%
 - Heidke Skill Score = 0.658
 - Probability of detection = 61.6%
 - False alarm rate = 24.1%
 - About <u>76%</u> of events exceeding this threshold were flash drought events.

Now what?

- Time to implement the model into something useable on a daily basis.
- What forecast data to use?
 - GFS
 - Updated regularly
 - Includes all the variables we trained with
 - Forecast goes out at least 14 days
 - Required since the model was trained to use 2 weeks of data for a prediction.

The raw prediction output was difficult to interpret.

- Percent of trees in forest ≠
 Probability of flash drought
- A simple "yes" or "no" forecast isn't ideal.
- Would be better if we could show risk levels
 - Low, Medium, High risk, etc.

Looked to the testing results for

- **guidance.** Risk levels should be based on a risk probability.
- Can estimate a probability using prior flash drought events.
 - "In the past, what percent of flash drought events happened when n% of trees predicted a flash drought?"

Risk Levels:

• Low:

- ≤ 10% risk
- Slight:
 - > 10% risk

Moderate:

- > 25% risk
- High:
 - > 50% risk

• Very High:

- >75% risk
- Extreme:
 - > 90% risk

Risk Level	Probability of Detection	False Alarm Rate
Low	100 %	100 %
Slight	89.8 %	92.3 %
Moderate	82.9 %	79.8 %
High	71.1 %	47.8 %
Very High	58.7 %	25.1 %
Extreme	43.2 %	10.5 %

Working Prototype

Success!

- We have a finished tool!
- Updates every 6 hours
 - Shortly after newest GFS run is available.

Working Prototype

A few things to note...

- The model uses GFS *forecast* data to make a prediction.
 - Prediction only as good as the GFS's prediction
 - If the 2-week GFS forecast changes, the prediction will change.
- Model was only trained for events in April – October
 - Limited skill outside of this window
- Prediction is the likelihood of flash drought onset.
 - Not predicting if a current flash drought event will persist

Next Steps

More testing is needed.

- All model performance testing was done on NARR reanalysis data.
 - Yet to be seen how model handles GFS forecast data.
- Test other variables in model
 - Drought indices
- Notification system
 - Users can sign up to get alerts when their location is at risk of flash drought onset.

Next Steps

We need your help!

- We'd love to have you try the tool for yourself!
- Try it out over the next few months and let us know your thoughts.
 - Ideas and suggestions
 - Bugs and other issues
 - Bad or suspicious forecasts

https://mrcc.purdue.edu/MWDEWS/flashdroughttool.html

