

Use of a GIS application to evaluate the accuracy of forecaster and model predictions of snowfall in eastern New York and western New England

Motivation

- Determine relationships between environmental parameters and orographic ratios of observed snowfall
- Assess accuracy of impact of terrain on snowfall forecasts from NWS Albany, high-resolution (3 km) models HRRR and NAMNest across eastern New York and western New England.
- Stratify observed snowfall analyses and forecast error plots by environmental parameters such as low-level wind direction/speed, surface temperature, Froude number, 950-850mb lapse rate, and elevation ratio (snowfall > 1000 feet divided by snowfall < 1000 feet).
- *Froude Number* is an estimation of whether the flow can make it over a mountain barrier and is a ratio of the wind perpendicular to the barrier versus the atmospheric stability.
- If the Froude Number is low (< 1), it is subcritical and blocked. Air will not make it over the mountain and precipitation will back up behind the barrier. If the Froude Number is high (> 1), it is supercritical and unblocked. The air will flow freely over the mountains and deposit the heaviest precipitation on the leeward side. A Froude Number near 1 is considered critical, and the heaviest precipitation will likely fall along the barrier.

Methodology

- Positive Snow Depth Change between start and end of an event used for HRRR and NAMNest.
- Archived NDFD (National Digital Forecast Database) used for NWS Albany forecast snowfall
- **GAZPACHO** (Gridded Automated Zonal Precipitation and Compete Hi-Res Output) utilized for Snowfall Analyses and forecast error plots:
- <u>https://vlab.ncep.noaa.gov/redmine/projects/n</u> wsscp/wiki/Gazpacho
- 12 events were strategically selected from the 2017-18 winter season.
- Environmental parameters were calculated from 00 hour RAP soundings using BUFKIT every 3 hours through the duration of each event.
- Parameters were then time-averaged and entered into a spreadsheet.
- Median values for each parameter were calculated, then each event was binned into > or < the median.
- Maps of Observed Snowfall and Forecast Error from NDFD, HRRR, and NAMNest were created for each parameter.
- Snowfall analyses and error maps were also stratified by elevation (> and < 1000 feet)
- Median forecast biases were then computed for NDFD, HRRR and NAMNest.

							-
ent List - Date/time range	Snowfall	0-1km/925 Wind Dir	0-1 km Wind Sp	Sfc. Temp	950-850 Lapse Rate	Froude #	
YSnowfall-20171209_1200-20171210_0600	2.4"	NW-NE	3.2	-1.7	3.0	0.2	
YSnowfall-20171212_0600-20171213_0600	5.7"	SW-SE	9.8	-4.0	4.8	1.1	
YSnowfall-20171222_0600-20171223_0600	3.1"	SW-SE	4.1	-6.7	-2.3	0.2	
YSnowfall-20171225_0000-20171225_1800	3.6"	SW-SE	4.1	-2.6	3.6	2.4	
YSnowfall-20180104_0600-20180105_1200	4.8"	NW-NE	20.1	-10.0	3.5	2.0	
YSnowfall-20180116_1200-20180117_1800	3.6"	SW-SE	2.9	-5.1	2.1	0.3	
YSnowfall-20180204_1200-20180205_0600	4.7"	SW-SE	18.3	-1.6	1.0	0.3	
YSnowfall-20180207_1200-20180208_0600	6.1"	SW-SE	4.2	-5.7	0.2	1.0	
YSnowfall-20180222_1200-20180223_0000	1.2"	NW-NE	7.8	1.1	-0.7	0.1	
YSnowfall-20180302_0000-20180303_0600	8.0"	NW-NE	20.0	1.5	1.0	0.7	
YSnowfall-20180307_0000-20180308_1200	7.8"	NW-NE	5.6	0.6	4.8	0.9	
YSnowfall-20180313_0000-20180316_0000	11.3"	NW-NE	15.6	0.6	6.7	2.1	
		Median	6.7	-2.2	2.6	0.8	ĺ

Example of GAZPACHO Output: 7-8 March 2018

- (below, left) from HRRR.

National Weather Service Albany New York HRRR Snowfall Difference 03/06/2018 07:00PM to 03/08/2018 07:00AM

Largest HRRR forecast error across higher terrain east of Hudson Valley (negative values = forecast too low) NDFD bias NDFD bias > 1000 NDFD bias < 1000 HRRR bias HRRR bias > 1000 HRRR

-1.2	-1.0	-1.4	-2.2	-1.8
0.0	-0.1	0.1	-2.8	-3.5
1.8	1.7	1.9	-0.5	-0.7
0.6	1.0	0.1	-1.5	-0.9
-0.3	-0.2	-0.6	-0.7	-1.0
-0.6	-0.2	-1.2	-2.3	-2.1
-1.4	-1.6	-1.2	-4.0	-4.5
1.9	1.7	2.0	-3.3	-3.4
-0.6	-0.4	-0.9	-1.8	-1.7
-5.9	-5.5	-6.6	-8.6	-8.7
2.4	2.1	2.9	-8.0	-8.0
-0.4	-1.4	0.5	-6.0	-6.7
-0.4	-0.2	-0.3	-2.6	-2.8

- Mean forecast bias from NDFD, HRRR and NAMNest shown.
- NDFD bias varied from event to event.
- HRRR and NAMNest biases were consistently negative.
- This is likely result in using *Positive Snow Depth Change* instead of **Snowfall** (which assumes 10:1 snow to liquid ratio).
- Through correspondence with Environmental Modeling Center, it was suggested to use *Positive Snow Depth* for a better representation of model snowfall.
- Results did not vary much separated by elevation (> and < 1000 feet)

Elevation **F**

Joseph P. Villani, Michael Evans, and Vasil T. Koleci (NOAA/National Weather Service, Albany, NY) Charles Gant (NOAA/National Weather Service, Morristown, TN)

> National Weather Service Albany New York HRRR Snowfall Forecast 03/06/2018 07:00PM to 03/08/2018 07:00A alvsis Data Source: Regional Observation nowfall Forecast 0" -**=** < 1.0" 6.0" - 8.0" 6.0" - 8.0" 8.0" - 12.0" 8.0" - 12.0" **12.0" - 18.0**" **12.0" - 18.0**" 18.0" - 24.0" 18.0" - 24.0" 24.0" - 30.0" 24.0" - 30.0" **30.0" - 36.0 30.0" - 36.0**" **36.0" - 50.0**" **36.0" - 50.0**" 50.0" - 100.0" 50.0" - 100.0

Observed Snowfall Analysis (above, left), HRRR positive snow depth change (above, right), and forecast error

For longer duration events, 2 HRRR model runs were used: snow depth from 00 hour forecast preceding the event and snow depth at the end of the event from a subsequent run that captured the time frame.

NDFD, HRRR & NAMNest bias for all elevations, > 1000 feet and < 1000 feet

atio	Correlations of elevation ratio to environmental parameters			
	950-850 mb lapse rate	0.73		
	Froude number	0.57		
	0-1 km wind speed	0.40		
	Surface Temp	0.24		

Summary

- Similar results from HRRR and NAMNest for several parameter (not all shown).
- Example shown is for Froude #.
- A consistent negative bias (forecast too low) was noted for both HRRR and NAMNest, although placement and magnitude of forecast errors differed.
- Substantial correlation values were found between elevation ratio and several environmental parameters.
- There was no significant tendency for larger model errors for higher terrain vs. lower elevations.

Environmental Parameter-based Composites (2017-18)

Observed snowfall composites > and < median Froude number (6 events)

